CZonePlacer.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528
  1. /*
  2. * CZonePlacer.cpp, part of VCMI engine
  3. *
  4. * Authors: listed in file AUTHORS in main folder
  5. *
  6. * License: GNU General Public License v2.0 or later
  7. * Full text of license available in license.txt file, in main folder
  8. *
  9. */
  10. #include "StdInc.h"
  11. #include "../CRandomGenerator.h"
  12. #include "CZonePlacer.h"
  13. #include "CRmgTemplateZone.h"
  14. #include "../mapping/CMap.h"
  15. #include "CZoneGraphGenerator.h"
  16. class CRandomGenerator;
  17. CPlacedZone::CPlacedZone(const CRmgTemplateZone * zone)
  18. {
  19. }
  20. CZonePlacer::CZonePlacer(CMapGenerator * Gen) : gen(Gen)
  21. {
  22. }
  23. CZonePlacer::~CZonePlacer()
  24. {
  25. }
  26. int3 CZonePlacer::cords (const float3 f) const
  27. {
  28. return int3(std::max(0.f, (f.x * gen->map->width)-1), std::max(0.f, (f.y * gen->map->height-1)), f.z);
  29. }
  30. float CZonePlacer::getDistance (float distance) const
  31. {
  32. return (distance ? distance * distance : 1e-6);
  33. }
  34. void CZonePlacer::placeZones(const CMapGenOptions * mapGenOptions, CRandomGenerator * rand)
  35. {
  36. logGlobal->infoStream() << "Starting zone placement";
  37. width = mapGenOptions->getWidth();
  38. height = mapGenOptions->getHeight();
  39. auto zones = gen->getZones();
  40. bool underground = mapGenOptions->getHasTwoLevels();
  41. /*
  42. gravity-based algorithm
  43. let's assume we try to fit N circular zones with radius = size on a map
  44. */
  45. gravityConstant = 4e-3;
  46. stiffnessConstant = 4e-3;
  47. TZoneVector zonesVector(zones.begin(), zones.end());
  48. assert (zonesVector.size());
  49. RandomGeneratorUtil::randomShuffle(zonesVector, *rand);
  50. //0. set zone sizes and surface / underground level
  51. prepareZones(zones, zonesVector, underground, rand);
  52. //gravity-based algorithm. connected zones attract, intersceting zones and map boundaries push back
  53. //remember best solution
  54. float bestTotalDistance = 1e10;
  55. float bestTotalOverlap = 1e10;
  56. std::map<CRmgTemplateZone *, float3> bestSolution;
  57. TForceVector forces;
  58. TForceVector totalForces; // both attraction and pushback, overcomplicated?
  59. TDistanceVector distances;
  60. TDistanceVector overlaps;
  61. const int MAX_ITERATIONS = 100;
  62. for (int i = 0; i < MAX_ITERATIONS; ++i) //until zones reach their desired size and fill the map tightly
  63. {
  64. //1. attract connected zones
  65. attractConnectedZones(zones, forces, distances);
  66. for (auto zone : forces)
  67. {
  68. zone.first->setCenter (zone.first->getCenter() + zone.second);
  69. totalForces[zone.first] = zone.second; //override
  70. }
  71. //2. separate overlapping zones
  72. separateOverlappingZones(zones, forces, overlaps);
  73. for (auto zone : forces)
  74. {
  75. zone.first->setCenter (zone.first->getCenter() + zone.second);
  76. totalForces[zone.first] += zone.second; //accumulate
  77. }
  78. //3. now perform drastic movement of zone that is completely not linked
  79. moveOneZone(zones, totalForces, distances, overlaps);
  80. //4. NOW after everything was moved, re-evaluate zone positions
  81. attractConnectedZones(zones, forces, distances);
  82. separateOverlappingZones(zones, forces, overlaps);
  83. float totalDistance = 0;
  84. float totalOverlap = 0;
  85. for (auto zone : distances) //find most misplaced zone
  86. {
  87. totalDistance += zone.second;
  88. float overlap = overlaps[zone.first];
  89. totalOverlap += overlap;
  90. }
  91. //check fitness function
  92. bool improvement = false;
  93. if (bestTotalDistance > 0 && bestTotalOverlap > 0)
  94. {
  95. if (totalDistance * totalOverlap < bestTotalDistance * bestTotalOverlap) //multiplication is better for auto-scaling, but stops working if one factor is 0
  96. improvement = true;
  97. }
  98. else
  99. if (totalDistance + totalOverlap < bestTotalDistance + bestTotalOverlap)
  100. improvement = true;
  101. logGlobal->traceStream() << boost::format("Total distance between zones after this iteration: %2.4f, Total overlap: %2.4f, Improved: %s") % totalDistance % totalOverlap % improvement;
  102. //save best solution
  103. if (improvement)
  104. {
  105. bestTotalDistance = totalDistance;
  106. bestTotalOverlap = totalOverlap;
  107. for (auto zone : zones)
  108. bestSolution[zone.second] = zone.second->getCenter();
  109. }
  110. }
  111. logGlobal->traceStream() << boost::format("Best fitness reached: total distance %2.4f, total overlap %2.4f") % bestTotalDistance % bestTotalOverlap;
  112. for (auto zone : zones) //finalize zone positions
  113. {
  114. zone.second->setPos (cords (bestSolution[zone.second]));
  115. logGlobal->traceStream() << boost::format ("Placed zone %d at relative position %s and coordinates %s") % zone.first % zone.second->getCenter() % zone.second->getPos();
  116. }
  117. }
  118. void CZonePlacer::prepareZones(TZoneMap &zones, TZoneVector &zonesVector, const bool underground, CRandomGenerator * rand)
  119. {
  120. TRmgTemplateZoneId firstZone = zones.begin()->first; //we want lowest ID here
  121. std::vector<float> totalSize = { 0, 0 }; //make sure that sum of zone sizes on surface and uderground match size of the map
  122. const float radius = 0.4f;
  123. const float pi2 = 6.28f;
  124. int zonesOnLevel[2] = { 0, 0 };
  125. //even distribution for surface / underground zones. Surface zones always have priority.
  126. TZoneVector zonesToPlace;
  127. std::map<TRmgTemplateZoneId, int> levels;
  128. //first pass - determine fixed surface for zones
  129. for (auto zone : zonesVector)
  130. {
  131. //TODO: place players depending on their factions
  132. if (zone.first == firstZone)
  133. {
  134. zonesOnLevel[0]++;
  135. levels[zone.first] = 0;
  136. }
  137. else
  138. {
  139. zonesToPlace.push_back(zone);
  140. }
  141. }
  142. for (auto zone : zonesToPlace)
  143. {
  144. if (underground) //only then consider underground zones
  145. {
  146. int level = 0;
  147. if (zonesOnLevel[1] < zonesOnLevel[0]) //only if there are less underground zones
  148. level = 1;
  149. else
  150. level = 0;
  151. levels[zone.first] = level;
  152. zonesOnLevel[level]++;
  153. }
  154. else
  155. levels[zone.first] = 0;
  156. }
  157. for (auto zone : zonesVector)
  158. {
  159. int level = levels[zone.first];
  160. totalSize[level] += (zone.second->getSize() * zone.second->getSize());
  161. float randomAngle = rand->nextDouble(0, pi2);
  162. zone.second->setCenter(float3(0.5f + std::sin(randomAngle) * radius, 0.5f + std::cos(randomAngle) * radius, level)); //place zones around circle
  163. }
  164. /*
  165. prescale zones
  166. formula: sum((prescaler*n)^2)*pi = WH
  167. prescaler = sqrt((WH)/(sum(n^2)*pi))
  168. */
  169. std::vector<float> prescaler = { 0, 0 };
  170. for (int i = 0; i < 2; i++)
  171. prescaler[i] = sqrt((width * height) / (totalSize[i] * 3.14f));
  172. mapSize = sqrt(width * height);
  173. for (auto zone : zones)
  174. {
  175. zone.second->setSize(zone.second->getSize() * prescaler[zone.second->getCenter().z]);
  176. }
  177. }
  178. void CZonePlacer::attractConnectedZones(TZoneMap &zones, TForceVector &forces, TDistanceVector &distances)
  179. {
  180. for (auto zone : zones)
  181. {
  182. float3 forceVector(0, 0, 0);
  183. float3 pos = zone.second->getCenter();
  184. float totalDistance = 0;
  185. for (auto con : zone.second->getConnections())
  186. {
  187. auto otherZone = zones[con];
  188. float3 otherZoneCenter = otherZone->getCenter();
  189. float distance = pos.dist2d(otherZoneCenter);
  190. float minDistance = 0;
  191. if (pos.z != otherZoneCenter.z)
  192. minDistance = 0; //zones on different levels can overlap completely
  193. else
  194. minDistance = (zone.second->getSize() + otherZone->getSize()) / mapSize; //scale down to (0,1) coordinates
  195. if (distance > minDistance)
  196. {
  197. //WARNING: compiler used to 'optimize' that line so it never actually worked
  198. float overlapMultiplier = (pos.z == otherZoneCenter.z) ? (minDistance / distance) : 1.0f;
  199. forceVector += (((otherZoneCenter - pos)* overlapMultiplier / getDistance(distance))) * gravityConstant; //positive value
  200. totalDistance += (distance - minDistance);
  201. }
  202. }
  203. distances[zone.second] = totalDistance;
  204. forceVector.z = 0; //operator - doesn't preserve z coordinate :/
  205. forces[zone.second] = forceVector;
  206. }
  207. }
  208. void CZonePlacer::separateOverlappingZones(TZoneMap &zones, TForceVector &forces, TDistanceVector &overlaps)
  209. {
  210. for (auto zone : zones)
  211. {
  212. float3 forceVector(0, 0, 0);
  213. float3 pos = zone.second->getCenter();
  214. float overlap = 0;
  215. //separate overlaping zones
  216. for (auto otherZone : zones)
  217. {
  218. float3 otherZoneCenter = otherZone.second->getCenter();
  219. //zones on different levels don't push away
  220. if (zone == otherZone || pos.z != otherZoneCenter.z)
  221. continue;
  222. float distance = pos.dist2d(otherZoneCenter);
  223. float minDistance = (zone.second->getSize() + otherZone.second->getSize()) / mapSize;
  224. if (distance < minDistance)
  225. {
  226. forceVector -= (((otherZoneCenter - pos)*(minDistance / (distance ? distance : 1e-3))) / getDistance(distance)) * stiffnessConstant; //negative value
  227. overlap += (minDistance - distance); //overlapping of small zones hurts us more
  228. }
  229. }
  230. //move zones away from boundaries
  231. //do not scale boundary distance - zones tend to get squashed
  232. float size = zone.second->getSize() / mapSize;
  233. auto pushAwayFromBoundary = [&forceVector, pos, size, &overlap, this](float x, float y)
  234. {
  235. float3 boundary = float3(x, y, pos.z);
  236. float distance = pos.dist2d(boundary);
  237. overlap += std::max<float>(0, distance - size); //check if we're closer to map boundary than value of zone size
  238. forceVector -= (boundary - pos) * (size - distance) / this->getDistance(distance) * this->stiffnessConstant; //negative value
  239. };
  240. if (pos.x < size)
  241. {
  242. pushAwayFromBoundary(0, pos.y);
  243. }
  244. if (pos.x > 1 - size)
  245. {
  246. pushAwayFromBoundary(1, pos.y);
  247. }
  248. if (pos.y < size)
  249. {
  250. pushAwayFromBoundary(pos.x, 0);
  251. }
  252. if (pos.y > 1 - size)
  253. {
  254. pushAwayFromBoundary(pos.x, 1);
  255. }
  256. overlaps[zone.second] = overlap;
  257. forceVector.z = 0; //operator - doesn't preserve z coordinate :/
  258. forces[zone.second] = forceVector;
  259. }
  260. }
  261. void CZonePlacer::moveOneZone(TZoneMap &zones, TForceVector &totalForces, TDistanceVector &distances, TDistanceVector &overlaps)
  262. {
  263. float maxRatio = 0;
  264. const int maxDistanceMovementRatio = zones.size() * zones.size(); //experimental - the more zones, the greater total distance expected
  265. CRmgTemplateZone * misplacedZone = nullptr;
  266. float totalDistance = 0;
  267. float totalOverlap = 0;
  268. for (auto zone : distances) //find most misplaced zone
  269. {
  270. totalDistance += zone.second;
  271. float overlap = overlaps[zone.first];
  272. totalOverlap += overlap;
  273. float ratio = (zone.second + overlap) / totalForces[zone.first].mag(); //if distance to actual movement is long, the zone is misplaced
  274. if (ratio > maxRatio)
  275. {
  276. maxRatio = ratio;
  277. misplacedZone = zone.first;
  278. }
  279. }
  280. logGlobal->traceStream() << boost::format("Worst misplacement/movement ratio: %3.2f") % maxRatio;
  281. if (maxRatio > maxDistanceMovementRatio)
  282. {
  283. CRmgTemplateZone * targetZone = nullptr;
  284. float3 ourCenter = misplacedZone->getCenter();
  285. if (totalDistance > totalOverlap)
  286. {
  287. //find most distant zone that should be attracted and move inside it
  288. float maxDistance = 0;
  289. for (auto con : misplacedZone->getConnections())
  290. {
  291. auto otherZone = zones[con];
  292. float distance = otherZone->getCenter().dist2dSQ(ourCenter);
  293. if (distance > maxDistance)
  294. {
  295. maxDistance = distance;
  296. targetZone = otherZone;
  297. }
  298. }
  299. float3 vec = targetZone->getCenter() - ourCenter;
  300. float newDistanceBetweenZones = (std::max(misplacedZone->getSize(), targetZone->getSize())) / mapSize;
  301. logGlobal->traceStream() << boost::format("Trying to move zone %d %s towards %d %s. Old distance %f") %
  302. misplacedZone->getId() % ourCenter() % targetZone->getId() % targetZone->getCenter()() % maxDistance;
  303. logGlobal->traceStream() << boost::format("direction is %s") % vec();
  304. misplacedZone->setCenter(targetZone->getCenter() - vec.unitVector() * newDistanceBetweenZones); //zones should now overlap by half size
  305. logGlobal->traceStream() << boost::format("New distance %f") % targetZone->getCenter().dist2d(misplacedZone->getCenter());
  306. }
  307. else
  308. {
  309. float maxOverlap = 0;
  310. for (auto otherZone : zones)
  311. {
  312. float3 otherZoneCenter = otherZone.second->getCenter();
  313. if (otherZone.second == misplacedZone || otherZoneCenter.z != ourCenter.z)
  314. continue;
  315. float distance = otherZoneCenter.dist2dSQ(ourCenter);
  316. if (distance > maxOverlap)
  317. {
  318. maxOverlap = distance;
  319. targetZone = otherZone.second;
  320. }
  321. }
  322. float3 vec = ourCenter - targetZone->getCenter();
  323. float newDistanceBetweenZones = (misplacedZone->getSize() + targetZone->getSize()) / mapSize;
  324. logGlobal->traceStream() << boost::format("Trying to move zone %d %s away from %d %s. Old distance %f") %
  325. misplacedZone->getId() % ourCenter() % targetZone->getId() % targetZone->getCenter()() % maxOverlap;
  326. logGlobal->traceStream() << boost::format("direction is %s") % vec();
  327. misplacedZone->setCenter(targetZone->getCenter() + vec.unitVector() * newDistanceBetweenZones); //zones should now be just separated
  328. logGlobal->traceStream() << boost::format("New distance %f") % targetZone->getCenter().dist2d(misplacedZone->getCenter());
  329. }
  330. }
  331. }
  332. float CZonePlacer::metric (const int3 &A, const int3 &B) const
  333. {
  334. /*
  335. Matlab code
  336. dx = abs(A(1) - B(1)); %distance must be symmetric
  337. dy = abs(A(2) - B(2));
  338. d = 0.01 * dx^3 - 0.1618 * dx^2 + 1 * dx + ...
  339. 0.01618 * dy^3 + 0.1 * dy^2 + 0.168 * dy;
  340. */
  341. float dx = abs(A.x - B.x) * scaleX;
  342. float dy = abs(A.y - B.y) * scaleY;
  343. //Horner scheme
  344. return dx * (1 + dx * (0.1 + dx * 0.01)) + dy * (1.618 + dy * (-0.1618 + dy * 0.01618));
  345. }
  346. void CZonePlacer::assignZones(const CMapGenOptions * mapGenOptions)
  347. {
  348. logGlobal->infoStream() << "Starting zone colouring";
  349. auto width = mapGenOptions->getWidth();
  350. auto height = mapGenOptions->getHeight();
  351. //scale to Medium map to ensure smooth results
  352. scaleX = 72.f / width;
  353. scaleY = 72.f / height;
  354. auto zones = gen->getZones();
  355. typedef std::pair<CRmgTemplateZone *, float> Dpair;
  356. std::vector <Dpair> distances;
  357. distances.reserve(zones.size());
  358. //now place zones correctly and assign tiles to each zone
  359. auto compareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool
  360. {
  361. //bigger zones have smaller distance
  362. return lhs.second / lhs.first->getSize() < rhs.second / rhs.first->getSize();
  363. };
  364. auto moveZoneToCenterOfMass = [](CRmgTemplateZone * zone) -> void
  365. {
  366. int3 total(0, 0, 0);
  367. auto tiles = zone->getTileInfo();
  368. for (auto tile : tiles)
  369. {
  370. total += tile;
  371. }
  372. int size = tiles.size();
  373. assert(size);
  374. zone->setPos(int3(total.x / size, total.y / size, total.z / size));
  375. };
  376. int levels = gen->map->twoLevel ? 2 : 1;
  377. /*
  378. 1. Create Voronoi diagram
  379. 2. find current center of mass for each zone. Move zone to that center to balance zones sizes
  380. */
  381. for (int i = 0; i<width; i++)
  382. {
  383. for (int j = 0; j<height; j++)
  384. {
  385. for (int k = 0; k < levels; k++)
  386. {
  387. distances.clear();
  388. int3 pos(i, j, k);
  389. for (auto zone : zones)
  390. {
  391. if (zone.second->getPos().z == k)
  392. distances.push_back(std::make_pair(zone.second, pos.dist2dSQ(zone.second->getPos())));
  393. else
  394. distances.push_back(std::make_pair(zone.second, std::numeric_limits<float>::max()));
  395. }
  396. boost::min_element(distances, compareByDistance)->first->addTile(pos); //closest tile belongs to zone
  397. }
  398. }
  399. }
  400. for (auto zone : zones)
  401. moveZoneToCenterOfMass(zone.second);
  402. //assign actual tiles to each zone using nonlinear norm for fine edges
  403. for (auto zone : zones)
  404. zone.second->clearTiles(); //now populate them again
  405. for (int i=0; i<width; i++)
  406. {
  407. for(int j=0; j<height; j++)
  408. {
  409. for (int k = 0; k < levels; k++)
  410. {
  411. distances.clear();
  412. int3 pos(i, j, k);
  413. for (auto zone : zones)
  414. {
  415. if (zone.second->getPos().z == k)
  416. distances.push_back (std::make_pair(zone.second, metric(pos, zone.second->getPos())));
  417. else
  418. distances.push_back (std::make_pair(zone.second, std::numeric_limits<float>::max()));
  419. }
  420. boost::min_element(distances, compareByDistance)->first->addTile(pos); //closest tile belongs to zone
  421. }
  422. }
  423. }
  424. //set position (town position) to center of mass of irregular zone
  425. for (auto zone : zones)
  426. {
  427. moveZoneToCenterOfMass(zone.second);
  428. //TODO: similiar for islands
  429. #define CREATE_FULL_UNDERGROUND true //consider linking this with water amount
  430. if (zone.second->getPos().z)
  431. {
  432. if (!CREATE_FULL_UNDERGROUND)
  433. zone.second->discardDistantTiles(gen, zone.second->getSize() + 1);
  434. //make sure that terrain inside zone is not a rock
  435. //FIXME: reorder actions?
  436. zone.second->paintZoneTerrain (gen, ETerrainType::SUBTERRANEAN);
  437. }
  438. }
  439. logGlobal->infoStream() << "Finished zone colouring";
  440. }