BinarySerializer.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. /*
  2. * BinarySerializer.h, part of VCMI engine
  3. *
  4. * Authors: listed in file AUTHORS in main folder
  5. *
  6. * License: GNU General Public License v2.0 or later
  7. * Full text of license available in license.txt file, in main folder
  8. *
  9. */
  10. #pragma once
  11. #include "CSerializer.h"
  12. #include "CTypeList.h"
  13. #include "SerializerReflection.h"
  14. #include "ESerializationVersion.h"
  15. #include "Serializeable.h"
  16. #include "../mapObjects/CArmedInstance.h"
  17. VCMI_LIB_NAMESPACE_BEGIN
  18. class DLL_LINKAGE CSaverBase
  19. {
  20. protected:
  21. IBinaryWriter * writer;
  22. public:
  23. CSaverBase(IBinaryWriter * w): writer(w){};
  24. void write(const void * data, unsigned size)
  25. {
  26. writer->write(reinterpret_cast<const std::byte*>(data), size);
  27. };
  28. };
  29. /// Main class for serialization of classes into binary form
  30. /// Behaviour for various classes is following:
  31. /// Primitives: copy memory into underlying stream (defined in CSaverBase)
  32. /// Containers: custom overloaded method that decouples class into primitives
  33. /// VCMI Classes: recursively serialize them via ClassName::serialize( BinarySerializer &, int version) call
  34. class BinarySerializer : public CSaverBase
  35. {
  36. template<typename Handler>
  37. struct VariantVisitorSaver
  38. {
  39. Handler &h;
  40. VariantVisitorSaver(Handler &H):h(H)
  41. {
  42. }
  43. template <typename T>
  44. void operator()(const T &t)
  45. {
  46. h & t;
  47. }
  48. };
  49. template<typename Fake, typename T>
  50. bool saveIfStackInstance(const T &data)
  51. {
  52. return false;
  53. }
  54. template<typename Fake>
  55. bool saveIfStackInstance(const CStackInstance* const &data)
  56. {
  57. assert(data->armyObj);
  58. SlotID slot;
  59. if(data->getNodeType() == CBonusSystemNode::COMMANDER)
  60. slot = SlotID::COMMANDER_SLOT_PLACEHOLDER;
  61. else
  62. slot = data->armyObj->findStack(data);
  63. assert(slot != SlotID());
  64. save(data->armyObj->id);
  65. save(slot);
  66. if (data->armyObj->id != ObjectInstanceID::NONE)
  67. return true;
  68. else
  69. return false;
  70. }
  71. public:
  72. using Version = ESerializationVersion;
  73. std::map<std::string, uint32_t> savedStrings;
  74. std::map<const Serializeable*, uint32_t> savedPointers;
  75. Version version = Version::CURRENT;
  76. static constexpr bool trackSerializedPointers = true;
  77. static constexpr bool saving = true;
  78. bool loadingGamestate = false;
  79. bool hasFeature(Version what) const
  80. {
  81. return version >= what;
  82. };
  83. DLL_LINKAGE BinarySerializer(IBinaryWriter * w);
  84. template<class T>
  85. BinarySerializer & operator&(const T & t)
  86. {
  87. this->save(t);
  88. return * this;
  89. }
  90. void saveEncodedInteger(int64_t value)
  91. {
  92. uint64_t valueUnsigned = std::abs(value);
  93. while (valueUnsigned > 0x3f)
  94. {
  95. uint8_t byteValue = (valueUnsigned & 0x7f) | 0x80;
  96. valueUnsigned = valueUnsigned >> 7;
  97. save(byteValue);
  98. }
  99. uint8_t lastByteValue = valueUnsigned & 0x3f;
  100. if (value < 0)
  101. lastByteValue |= 0x40;
  102. save(lastByteValue);
  103. }
  104. template < typename T, typename std::enable_if_t < std::is_same_v<T, bool>, int > = 0 >
  105. void save(const T &data)
  106. {
  107. uint8_t writ = static_cast<uint8_t>(data);
  108. save(writ);
  109. }
  110. template < class T, typename std::enable_if_t < std::is_floating_point_v<T>, int > = 0 >
  111. void save(const T &data)
  112. {
  113. // save primitive - simply dump binary data to output
  114. this->write(static_cast<const void *>(&data), sizeof(data));
  115. }
  116. template < class T, typename std::enable_if_t < std::is_integral_v<T> && !std::is_same_v<T, bool>, int > = 0 >
  117. void save(const T &data)
  118. {
  119. if constexpr (sizeof(T) == 1)
  120. {
  121. // save primitive - simply dump binary data to output
  122. this->write(static_cast<const void *>(&data), sizeof(data));
  123. }
  124. else
  125. {
  126. if (hasFeature(Version::COMPACT_INTEGER_SERIALIZATION))
  127. saveEncodedInteger(data);
  128. else
  129. this->write(static_cast<const void *>(&data), sizeof(data));
  130. }
  131. }
  132. void save(const Version &data)
  133. {
  134. this->write(static_cast<const void *>(&data), sizeof(data));
  135. }
  136. template < typename T, typename std::enable_if_t < std::is_enum_v<T>, int > = 0 >
  137. void save(const T &data)
  138. {
  139. int32_t writ = static_cast<int32_t>(data);
  140. *this & writ;
  141. }
  142. template < typename T, typename std::enable_if_t < std::is_array_v<T>, int > = 0 >
  143. void save(const T &data)
  144. {
  145. uint32_t size = std::size(data);
  146. for(uint32_t i=0; i < size; i++)
  147. *this & data[i];
  148. }
  149. template < typename T, typename std::enable_if_t < std::is_pointer_v<T>, int > = 0 >
  150. void save(const T &data)
  151. {
  152. //write if pointer is not nullptr
  153. bool isNull = (data == nullptr);
  154. save(isNull);
  155. //if pointer is nullptr then we don't need anything more...
  156. if(data == nullptr)
  157. return;
  158. typedef typename std::remove_const_t<typename std::remove_pointer_t<T>> TObjectType;
  159. if(writer->smartVectorMembersSerialization)
  160. {
  161. typedef typename VectorizedTypeFor<TObjectType>::type VType;
  162. typedef typename VectorizedIDType<TObjectType>::type IDType;
  163. if(const auto *info = writer->getVectorizedTypeInfo<VType, IDType>())
  164. {
  165. IDType id = writer->getIdFromVectorItem<VType>(*info, data);
  166. save(id);
  167. if(id != IDType(-1)) //vector id is enough
  168. return;
  169. }
  170. }
  171. if(writer->sendStackInstanceByIds)
  172. {
  173. const bool gotSaved = saveIfStackInstance<void>(data);
  174. if(gotSaved)
  175. return;
  176. }
  177. if(trackSerializedPointers)
  178. {
  179. // We might have an object that has multiple inheritance and store it via the non-first base pointer.
  180. // Therefore, all pointers need to be normalized to the actual object address.
  181. const auto * actualPointer = static_cast<const Serializeable*>(data);
  182. auto i = savedPointers.find(actualPointer);
  183. if(i != savedPointers.end())
  184. {
  185. //this pointer has been already serialized - write only it's id
  186. save(i->second);
  187. return;
  188. }
  189. //give id to this pointer
  190. uint32_t pid = savedPointers.size();
  191. savedPointers[actualPointer] = pid;
  192. save(pid);
  193. }
  194. //write type identifier
  195. uint16_t tid = CTypeList::getInstance().getTypeID(data);
  196. save(tid);
  197. if(!tid)
  198. save(*data); //if type is unregistered simply write all data in a standard way
  199. else
  200. CSerializationApplier::getInstance().getApplier(tid)->savePtr(*this, static_cast<const Serializeable*>(data)); //call serializer specific for our real type
  201. }
  202. template < typename T, typename std::enable_if_t < is_serializeable<BinarySerializer, T>::value, int > = 0 >
  203. void save(const T &data)
  204. {
  205. const_cast<T&>(data).serialize(*this);
  206. }
  207. void save(const std::monostate & data)
  208. {
  209. // no-op
  210. }
  211. template <typename T>
  212. void save(const std::shared_ptr<T> &data)
  213. {
  214. T *internalPtr = data.get();
  215. save(internalPtr);
  216. }
  217. template <typename T>
  218. void save(const std::shared_ptr<const T> &data)
  219. {
  220. const T *internalPtr = data.get();
  221. save(internalPtr);
  222. }
  223. template <typename T>
  224. void save(const std::unique_ptr<T> &data)
  225. {
  226. T *internalPtr = data.get();
  227. save(internalPtr);
  228. }
  229. template <typename T, typename std::enable_if_t < !std::is_same_v<T, bool >, int > = 0>
  230. void save(const std::vector<T> &data)
  231. {
  232. uint32_t length = data.size();
  233. *this & length;
  234. for(uint32_t i=0;i<length;i++)
  235. save(data[i]);
  236. }
  237. template <typename T, size_t N>
  238. void save(const boost::container::small_vector<T, N>& data)
  239. {
  240. uint32_t length = data.size();
  241. *this& length;
  242. for (uint32_t i = 0; i < length; i++)
  243. save(data[i]);
  244. }
  245. template <typename T, typename std::enable_if_t < !std::is_same_v<T, bool >, int > = 0>
  246. void save(const std::deque<T> & data)
  247. {
  248. uint32_t length = data.size();
  249. *this & length;
  250. for(uint32_t i = 0; i < length; i++)
  251. save(data[i]);
  252. }
  253. template <typename T, size_t N>
  254. void save(const std::array<T, N> &data)
  255. {
  256. for(uint32_t i=0; i < N; i++)
  257. save(data[i]);
  258. }
  259. template <typename T>
  260. void save(const std::set<T> &data)
  261. {
  262. auto & d = const_cast<std::set<T> &>(data);
  263. uint32_t length = d.size();
  264. save(length);
  265. for(auto i = d.begin(); i != d.end(); i++)
  266. save(*i);
  267. }
  268. template <typename T, typename U>
  269. void save(const std::unordered_set<T, U> &data)
  270. {
  271. auto & d = const_cast<std::unordered_set<T, U> &>(data);
  272. uint32_t length = d.size();
  273. *this & length;
  274. for(auto i = d.begin(); i != d.end(); i++)
  275. save(*i);
  276. }
  277. template <typename T>
  278. void save(const std::list<T> &data)
  279. {
  280. auto & d = const_cast<std::list<T> &>(data);
  281. uint32_t length = d.size();
  282. *this & length;
  283. for(auto i = d.begin(); i != d.end(); i++)
  284. save(*i);
  285. }
  286. void save(const std::string &data)
  287. {
  288. if (hasFeature(Version::COMPACT_STRING_SERIALIZATION))
  289. {
  290. if (data.empty())
  291. {
  292. save(static_cast<uint32_t>(0));
  293. return;
  294. }
  295. auto it = savedStrings.find(data);
  296. if (it == savedStrings.end())
  297. {
  298. save(static_cast<uint32_t>(data.length()));
  299. this->write(static_cast<const void *>(data.data()), data.size());
  300. // -1, -2...
  301. int32_t newStringID = -1 - savedStrings.size();
  302. savedStrings[data] = newStringID;
  303. }
  304. else
  305. {
  306. int32_t index = it->second;
  307. save(index);
  308. }
  309. }
  310. else
  311. {
  312. save(static_cast<uint32_t>(data.length()));
  313. this->write(static_cast<const void *>(data.data()), data.size());
  314. }
  315. }
  316. template <typename T1, typename T2>
  317. void save(const std::pair<T1,T2> &data)
  318. {
  319. save(data.first);
  320. save(data.second);
  321. }
  322. template <typename T1, typename T2>
  323. void save(const std::unordered_map<T1,T2> &data)
  324. {
  325. *this & static_cast<uint32_t>(data.size());
  326. for(auto i = data.begin(); i != data.end(); i++)
  327. {
  328. save(i->first);
  329. save(i->second);
  330. }
  331. }
  332. template <typename T1, typename T2>
  333. void save(const std::map<T1,T2> &data)
  334. {
  335. *this & static_cast<uint32_t>(data.size());
  336. for(auto i = data.begin(); i != data.end(); i++)
  337. {
  338. save(i->first);
  339. save(i->second);
  340. }
  341. }
  342. template <typename T1, typename T2>
  343. void save(const std::multimap<T1, T2> &data)
  344. {
  345. *this & static_cast<uint32_t>(data.size());
  346. for(auto i = data.begin(); i != data.end(); i++)
  347. {
  348. save(i->first);
  349. save(i->second);
  350. }
  351. }
  352. template<typename T0, typename... TN>
  353. void save(const std::variant<T0, TN...> & data)
  354. {
  355. int32_t which = data.index();
  356. save(which);
  357. VariantVisitorSaver<BinarySerializer> visitor(*this);
  358. std::visit(visitor, data);
  359. }
  360. template<typename T>
  361. void save(const std::optional<T> & data)
  362. {
  363. if(data)
  364. {
  365. save(static_cast<uint8_t>(1));
  366. save(*data);
  367. }
  368. else
  369. {
  370. save(static_cast<uint32_t>(0));
  371. }
  372. }
  373. template <typename T>
  374. void save(const boost::multi_array<T, 3> &data)
  375. {
  376. uint32_t length = data.num_elements();
  377. *this & length;
  378. auto shape = data.shape();
  379. uint32_t x = shape[0];
  380. uint32_t y = shape[1];
  381. uint32_t z = shape[2];
  382. *this & x & y & z;
  383. for(uint32_t i = 0; i < length; i++)
  384. save(data.data()[i]);
  385. }
  386. template <std::size_t T>
  387. void save(const std::bitset<T> &data)
  388. {
  389. static_assert(T <= 64);
  390. if constexpr (T <= 16)
  391. {
  392. auto writ = static_cast<uint16_t>(data.to_ulong());
  393. save(writ);
  394. }
  395. else if constexpr (T <= 32)
  396. {
  397. auto writ = static_cast<uint32_t>(data.to_ulong());
  398. save(writ);
  399. }
  400. else if constexpr (T <= 64)
  401. {
  402. auto writ = static_cast<uint64_t>(data.to_ulong());
  403. save(writ);
  404. }
  405. }
  406. };
  407. VCMI_LIB_NAMESPACE_END