|
|
@@ -0,0 +1,821 @@
|
|
|
+--- /dev/null
|
|
|
++++ b/crypto/unlzma.c
|
|
|
+@@ -0,0 +1,710 @@
|
|
|
++/*
|
|
|
++ * LZMA uncompresion module for pcomp
|
|
|
++ * Copyright (C) 2009 Felix Fietkau <[email protected]>
|
|
|
++ *
|
|
|
++ * Based on:
|
|
|
++ * Initial Linux kernel adaptation
|
|
|
++ * Copyright (C) 2006 Alain < [email protected] >
|
|
|
++ *
|
|
|
++ * Based on small lzma deflate implementation/Small range coder
|
|
|
++ * implementation for lzma.
|
|
|
++ * Copyright (C) 2006 Aurelien Jacobs < [email protected] >
|
|
|
++ *
|
|
|
++ * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
|
|
|
++ * Copyright (C) 1999-2005 Igor Pavlov
|
|
|
++ *
|
|
|
++ * This program is free software; you can redistribute it and/or modify it
|
|
|
++ * under the terms of the GNU General Public License version 2 as published
|
|
|
++ * by the Free Software Foundation.
|
|
|
++ *
|
|
|
++ * FIXME: the current implementation assumes that the caller will
|
|
|
++ * not free any output buffers until the whole decompression has been
|
|
|
++ * completed. This is necessary, because LZMA looks back at old output
|
|
|
++ * instead of doing a separate dictionary allocation, which saves RAM.
|
|
|
++ */
|
|
|
++
|
|
|
++#include <linux/init.h>
|
|
|
++#include <linux/module.h>
|
|
|
++#include <linux/vmalloc.h>
|
|
|
++#include <linux/interrupt.h>
|
|
|
++#include <linux/mm.h>
|
|
|
++#include <linux/net.h>
|
|
|
++#include <linux/slab.h>
|
|
|
++#include <linux/kthread.h>
|
|
|
++
|
|
|
++#include <crypto/internal/compress.h>
|
|
|
++#include "unlzma.h"
|
|
|
++
|
|
|
++static int instance = 0;
|
|
|
++
|
|
|
++struct unlzma_buffer {
|
|
|
++ struct unlzma_buffer *last;
|
|
|
++ int offset;
|
|
|
++ int size;
|
|
|
++ u8 *ptr;
|
|
|
++};
|
|
|
++
|
|
|
++struct unlzma_ctx {
|
|
|
++ struct task_struct *thread;
|
|
|
++ wait_queue_head_t next_req;
|
|
|
++ struct mutex mutex;
|
|
|
++ bool active;
|
|
|
++ bool cancel;
|
|
|
++
|
|
|
++ const u8 *next_in;
|
|
|
++ int avail_in;
|
|
|
++
|
|
|
++ u8 *next_out;
|
|
|
++ int avail_out;
|
|
|
++
|
|
|
++ /* reader state */
|
|
|
++ u32 code;
|
|
|
++ u32 range;
|
|
|
++ u32 bound;
|
|
|
++
|
|
|
++ /* writer state */
|
|
|
++ u8 previous_byte;
|
|
|
++ ssize_t pos;
|
|
|
++ struct unlzma_buffer *head;
|
|
|
++
|
|
|
++ /* cstate */
|
|
|
++ int state;
|
|
|
++ u32 rep0, rep1, rep2, rep3;
|
|
|
++
|
|
|
++ u32 dict_size;
|
|
|
++
|
|
|
++ void *workspace;
|
|
|
++ int workspace_size;
|
|
|
++};
|
|
|
++
|
|
|
++static inline bool
|
|
|
++unlzma_should_stop(struct unlzma_ctx *ctx)
|
|
|
++{
|
|
|
++ return unlikely(kthread_should_stop() || ctx->cancel);
|
|
|
++}
|
|
|
++
|
|
|
++static void
|
|
|
++unlzma_request_buffer(struct unlzma_ctx *ctx, int *avail)
|
|
|
++{
|
|
|
++ mutex_unlock(&ctx->mutex);
|
|
|
++ wait_event(ctx->next_req, unlzma_should_stop(ctx) || (*avail > 0));
|
|
|
++ mutex_lock(&ctx->mutex);
|
|
|
++}
|
|
|
++
|
|
|
++static u8
|
|
|
++rc_read(struct unlzma_ctx *ctx)
|
|
|
++{
|
|
|
++ if (unlikely(ctx->avail_in <= 0))
|
|
|
++ unlzma_request_buffer(ctx, &ctx->avail_in);
|
|
|
++
|
|
|
++ if (unlzma_should_stop(ctx))
|
|
|
++ return 0;
|
|
|
++
|
|
|
++ ctx->avail_in--;
|
|
|
++ return *(ctx->next_in++);
|
|
|
++}
|
|
|
++
|
|
|
++
|
|
|
++static inline void
|
|
|
++rc_get_code(struct unlzma_ctx *ctx)
|
|
|
++{
|
|
|
++ ctx->code = (ctx->code << 8) | rc_read(ctx);
|
|
|
++}
|
|
|
++
|
|
|
++static void
|
|
|
++rc_normalize(struct unlzma_ctx *ctx)
|
|
|
++{
|
|
|
++ if (ctx->range < (1 << RC_TOP_BITS)) {
|
|
|
++ ctx->range <<= 8;
|
|
|
++ rc_get_code(ctx);
|
|
|
++ }
|
|
|
++}
|
|
|
++
|
|
|
++static int
|
|
|
++rc_is_bit_0(struct unlzma_ctx *ctx, u16 *p)
|
|
|
++{
|
|
|
++ rc_normalize(ctx);
|
|
|
++ ctx->bound = *p * (ctx->range >> RC_MODEL_TOTAL_BITS);
|
|
|
++ return ctx->code < ctx->bound;
|
|
|
++}
|
|
|
++
|
|
|
++static void
|
|
|
++rc_update_bit_0(struct unlzma_ctx *ctx, u16 *p)
|
|
|
++{
|
|
|
++ ctx->range = ctx->bound;
|
|
|
++ *p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
|
|
|
++}
|
|
|
++
|
|
|
++static void
|
|
|
++rc_update_bit_1(struct unlzma_ctx *ctx, u16 *p)
|
|
|
++{
|
|
|
++ ctx->range -= ctx->bound;
|
|
|
++ ctx->code -= ctx->bound;
|
|
|
++ *p -= *p >> RC_MOVE_BITS;
|
|
|
++}
|
|
|
++
|
|
|
++static bool
|
|
|
++rc_get_bit(struct unlzma_ctx *ctx, u16 *p, int *symbol)
|
|
|
++{
|
|
|
++ if (rc_is_bit_0(ctx, p)) {
|
|
|
++ rc_update_bit_0(ctx, p);
|
|
|
++ *symbol *= 2;
|
|
|
++ return 0;
|
|
|
++ } else {
|
|
|
++ rc_update_bit_1(ctx, p);
|
|
|
++ *symbol = *symbol * 2 + 1;
|
|
|
++ return 1;
|
|
|
++ }
|
|
|
++}
|
|
|
++
|
|
|
++static int
|
|
|
++rc_direct_bit(struct unlzma_ctx *ctx)
|
|
|
++{
|
|
|
++ rc_normalize(ctx);
|
|
|
++ ctx->range >>= 1;
|
|
|
++ if (ctx->code >= ctx->range) {
|
|
|
++ ctx->code -= ctx->range;
|
|
|
++ return 1;
|
|
|
++ }
|
|
|
++ return 0;
|
|
|
++}
|
|
|
++
|
|
|
++static void
|
|
|
++rc_bit_tree_decode(struct unlzma_ctx *ctx, u16 *p, int num_levels, int *symbol)
|
|
|
++{
|
|
|
++ int i = num_levels;
|
|
|
++
|
|
|
++ *symbol = 1;
|
|
|
++ while (i--)
|
|
|
++ rc_get_bit(ctx, p + *symbol, symbol);
|
|
|
++ *symbol -= 1 << num_levels;
|
|
|
++}
|
|
|
++
|
|
|
++static u8
|
|
|
++peek_old_byte(struct unlzma_ctx *ctx, u32 offs)
|
|
|
++{
|
|
|
++ struct unlzma_buffer *bh = ctx->head;
|
|
|
++ u32 pos;
|
|
|
++
|
|
|
++ pos = ctx->pos - offs;
|
|
|
++ if (pos >= ctx->dict_size) {
|
|
|
++ pos = (~pos % ctx->dict_size);
|
|
|
++ }
|
|
|
++
|
|
|
++ while (bh->offset > pos) {
|
|
|
++ bh = bh->last;
|
|
|
++ if (!bh)
|
|
|
++ return 0;
|
|
|
++ }
|
|
|
++
|
|
|
++ pos -= bh->offset;
|
|
|
++ if (pos > bh->size)
|
|
|
++ return 0;
|
|
|
++
|
|
|
++ return bh->ptr[pos];
|
|
|
++}
|
|
|
++
|
|
|
++static void
|
|
|
++get_buffer(struct unlzma_ctx *ctx)
|
|
|
++{
|
|
|
++ struct unlzma_buffer *bh;
|
|
|
++
|
|
|
++ bh = kzalloc(sizeof(struct unlzma_buffer), GFP_KERNEL);
|
|
|
++ bh->ptr = ctx->next_out;
|
|
|
++ bh->offset = ctx->pos;
|
|
|
++ bh->last = ctx->head;
|
|
|
++ bh->size = ctx->avail_out;
|
|
|
++ ctx->head = bh;
|
|
|
++}
|
|
|
++
|
|
|
++static void
|
|
|
++write_byte(struct unlzma_ctx *ctx, u8 byte)
|
|
|
++{
|
|
|
++ if (unlikely(ctx->avail_out <= 0)) {
|
|
|
++ unlzma_request_buffer(ctx, &ctx->avail_out);
|
|
|
++ get_buffer(ctx);
|
|
|
++ }
|
|
|
++
|
|
|
++ if (!ctx->avail_out)
|
|
|
++ return;
|
|
|
++
|
|
|
++ ctx->previous_byte = byte;
|
|
|
++ *(ctx->next_out++) = byte;
|
|
|
++ ctx->avail_out--;
|
|
|
++ ctx->pos++;
|
|
|
++}
|
|
|
++
|
|
|
++
|
|
|
++static inline void
|
|
|
++copy_byte(struct unlzma_ctx *ctx, u32 offs)
|
|
|
++{
|
|
|
++ write_byte(ctx, peek_old_byte(ctx, offs));
|
|
|
++}
|
|
|
++
|
|
|
++static void
|
|
|
++copy_bytes(struct unlzma_ctx *ctx, u32 rep0, int len)
|
|
|
++{
|
|
|
++ do {
|
|
|
++ copy_byte(ctx, rep0);
|
|
|
++ len--;
|
|
|
++ if (unlzma_should_stop(ctx))
|
|
|
++ break;
|
|
|
++ } while (len != 0);
|
|
|
++}
|
|
|
++
|
|
|
++static void
|
|
|
++process_bit0(struct unlzma_ctx *ctx, u16 *p, int pos_state, u16 *prob,
|
|
|
++ int lc, u32 literal_pos_mask)
|
|
|
++{
|
|
|
++ int mi = 1;
|
|
|
++ rc_update_bit_0(ctx, prob);
|
|
|
++ prob = (p + LZMA_LITERAL +
|
|
|
++ (LZMA_LIT_SIZE
|
|
|
++ * (((ctx->pos & literal_pos_mask) << lc)
|
|
|
++ + (ctx->previous_byte >> (8 - lc))))
|
|
|
++ );
|
|
|
++
|
|
|
++ if (ctx->state >= LZMA_NUM_LIT_STATES) {
|
|
|
++ int match_byte = peek_old_byte(ctx, ctx->rep0);
|
|
|
++ do {
|
|
|
++ u16 bit;
|
|
|
++ u16 *prob_lit;
|
|
|
++
|
|
|
++ match_byte <<= 1;
|
|
|
++ bit = match_byte & 0x100;
|
|
|
++ prob_lit = prob + 0x100 + bit + mi;
|
|
|
++ if (rc_get_bit(ctx, prob_lit, &mi) != !!bit)
|
|
|
++ break;
|
|
|
++ } while (mi < 0x100);
|
|
|
++ }
|
|
|
++ while (mi < 0x100) {
|
|
|
++ u16 *prob_lit = prob + mi;
|
|
|
++ rc_get_bit(ctx, prob_lit, &mi);
|
|
|
++ }
|
|
|
++ write_byte(ctx, mi);
|
|
|
++ if (ctx->state < 4)
|
|
|
++ ctx->state = 0;
|
|
|
++ else if (ctx->state < 10)
|
|
|
++ ctx->state -= 3;
|
|
|
++ else
|
|
|
++ ctx->state -= 6;
|
|
|
++}
|
|
|
++
|
|
|
++static void
|
|
|
++process_bit1(struct unlzma_ctx *ctx, u16 *p, int pos_state, u16 *prob)
|
|
|
++{
|
|
|
++ int offset;
|
|
|
++ u16 *prob_len;
|
|
|
++ int num_bits;
|
|
|
++ int len;
|
|
|
++
|
|
|
++ rc_update_bit_1(ctx, prob);
|
|
|
++ prob = p + LZMA_IS_REP + ctx->state;
|
|
|
++ if (rc_is_bit_0(ctx, prob)) {
|
|
|
++ rc_update_bit_0(ctx, prob);
|
|
|
++ ctx->rep3 = ctx->rep2;
|
|
|
++ ctx->rep2 = ctx->rep1;
|
|
|
++ ctx->rep1 = ctx->rep0;
|
|
|
++ ctx->state = ctx->state < LZMA_NUM_LIT_STATES ? 0 : 3;
|
|
|
++ prob = p + LZMA_LEN_CODER;
|
|
|
++ } else {
|
|
|
++ rc_update_bit_1(ctx, prob);
|
|
|
++ prob = p + LZMA_IS_REP_G0 + ctx->state;
|
|
|
++ if (rc_is_bit_0(ctx, prob)) {
|
|
|
++ rc_update_bit_0(ctx, prob);
|
|
|
++ prob = (p + LZMA_IS_REP_0_LONG
|
|
|
++ + (ctx->state <<
|
|
|
++ LZMA_NUM_POS_BITS_MAX) +
|
|
|
++ pos_state);
|
|
|
++ if (rc_is_bit_0(ctx, prob)) {
|
|
|
++ rc_update_bit_0(ctx, prob);
|
|
|
++
|
|
|
++ ctx->state = ctx->state < LZMA_NUM_LIT_STATES ?
|
|
|
++ 9 : 11;
|
|
|
++ copy_byte(ctx, ctx->rep0);
|
|
|
++ return;
|
|
|
++ } else {
|
|
|
++ rc_update_bit_1(ctx, prob);
|
|
|
++ }
|
|
|
++ } else {
|
|
|
++ u32 distance;
|
|
|
++
|
|
|
++ rc_update_bit_1(ctx, prob);
|
|
|
++ prob = p + LZMA_IS_REP_G1 + ctx->state;
|
|
|
++ if (rc_is_bit_0(ctx, prob)) {
|
|
|
++ rc_update_bit_0(ctx, prob);
|
|
|
++ distance = ctx->rep1;
|
|
|
++ } else {
|
|
|
++ rc_update_bit_1(ctx, prob);
|
|
|
++ prob = p + LZMA_IS_REP_G2 + ctx->state;
|
|
|
++ if (rc_is_bit_0(ctx, prob)) {
|
|
|
++ rc_update_bit_0(ctx, prob);
|
|
|
++ distance = ctx->rep2;
|
|
|
++ } else {
|
|
|
++ rc_update_bit_1(ctx, prob);
|
|
|
++ distance = ctx->rep3;
|
|
|
++ ctx->rep3 = ctx->rep2;
|
|
|
++ }
|
|
|
++ ctx->rep2 = ctx->rep1;
|
|
|
++ }
|
|
|
++ ctx->rep1 = ctx->rep0;
|
|
|
++ ctx->rep0 = distance;
|
|
|
++ }
|
|
|
++ ctx->state = ctx->state < LZMA_NUM_LIT_STATES ? 8 : 11;
|
|
|
++ prob = p + LZMA_REP_LEN_CODER;
|
|
|
++ }
|
|
|
++
|
|
|
++ prob_len = prob + LZMA_LEN_CHOICE;
|
|
|
++ if (rc_is_bit_0(ctx, prob_len)) {
|
|
|
++ rc_update_bit_0(ctx, prob_len);
|
|
|
++ prob_len = (prob + LZMA_LEN_LOW
|
|
|
++ + (pos_state <<
|
|
|
++ LZMA_LEN_NUM_LOW_BITS));
|
|
|
++ offset = 0;
|
|
|
++ num_bits = LZMA_LEN_NUM_LOW_BITS;
|
|
|
++ } else {
|
|
|
++ rc_update_bit_1(ctx, prob_len);
|
|
|
++ prob_len = prob + LZMA_LEN_CHOICE_2;
|
|
|
++ if (rc_is_bit_0(ctx, prob_len)) {
|
|
|
++ rc_update_bit_0(ctx, prob_len);
|
|
|
++ prob_len = (prob + LZMA_LEN_MID
|
|
|
++ + (pos_state <<
|
|
|
++ LZMA_LEN_NUM_MID_BITS));
|
|
|
++ offset = 1 << LZMA_LEN_NUM_LOW_BITS;
|
|
|
++ num_bits = LZMA_LEN_NUM_MID_BITS;
|
|
|
++ } else {
|
|
|
++ rc_update_bit_1(ctx, prob_len);
|
|
|
++ prob_len = prob + LZMA_LEN_HIGH;
|
|
|
++ offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
|
|
|
++ + (1 << LZMA_LEN_NUM_MID_BITS));
|
|
|
++ num_bits = LZMA_LEN_NUM_HIGH_BITS;
|
|
|
++ }
|
|
|
++ }
|
|
|
++
|
|
|
++ rc_bit_tree_decode(ctx, prob_len, num_bits, &len);
|
|
|
++ len += offset;
|
|
|
++
|
|
|
++ if (ctx->state < 4) {
|
|
|
++ int pos_slot;
|
|
|
++
|
|
|
++ ctx->state += LZMA_NUM_LIT_STATES;
|
|
|
++ prob =
|
|
|
++ p + LZMA_POS_SLOT +
|
|
|
++ ((len <
|
|
|
++ LZMA_NUM_LEN_TO_POS_STATES ? len :
|
|
|
++ LZMA_NUM_LEN_TO_POS_STATES - 1)
|
|
|
++ << LZMA_NUM_POS_SLOT_BITS);
|
|
|
++ rc_bit_tree_decode(ctx, prob,
|
|
|
++ LZMA_NUM_POS_SLOT_BITS,
|
|
|
++ &pos_slot);
|
|
|
++ if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
|
|
|
++ int i, mi;
|
|
|
++ num_bits = (pos_slot >> 1) - 1;
|
|
|
++ ctx->rep0 = 2 | (pos_slot & 1);
|
|
|
++ if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
|
|
|
++ ctx->rep0 <<= num_bits;
|
|
|
++ prob = p + LZMA_SPEC_POS +
|
|
|
++ ctx->rep0 - pos_slot - 1;
|
|
|
++ } else {
|
|
|
++ num_bits -= LZMA_NUM_ALIGN_BITS;
|
|
|
++ while (num_bits--)
|
|
|
++ ctx->rep0 = (ctx->rep0 << 1) |
|
|
|
++ rc_direct_bit(ctx);
|
|
|
++ prob = p + LZMA_ALIGN;
|
|
|
++ ctx->rep0 <<= LZMA_NUM_ALIGN_BITS;
|
|
|
++ num_bits = LZMA_NUM_ALIGN_BITS;
|
|
|
++ }
|
|
|
++ i = 1;
|
|
|
++ mi = 1;
|
|
|
++ while (num_bits--) {
|
|
|
++ if (rc_get_bit(ctx, prob + mi, &mi))
|
|
|
++ ctx->rep0 |= i;
|
|
|
++ i <<= 1;
|
|
|
++ }
|
|
|
++ } else
|
|
|
++ ctx->rep0 = pos_slot;
|
|
|
++ if (++(ctx->rep0) == 0)
|
|
|
++ return;
|
|
|
++ }
|
|
|
++
|
|
|
++ len += LZMA_MATCH_MIN_LEN;
|
|
|
++
|
|
|
++ copy_bytes(ctx, ctx->rep0, len);
|
|
|
++}
|
|
|
++
|
|
|
++
|
|
|
++static int
|
|
|
++do_unlzma(struct unlzma_ctx *ctx)
|
|
|
++{
|
|
|
++ u8 hdr_buf[sizeof(struct lzma_header)];
|
|
|
++ struct lzma_header *header = (struct lzma_header *)hdr_buf;
|
|
|
++ u32 pos_state_mask;
|
|
|
++ u32 literal_pos_mask;
|
|
|
++ int lc, pb, lp;
|
|
|
++ int num_probs;
|
|
|
++ int i, mi;
|
|
|
++ u16 *p;
|
|
|
++
|
|
|
++ for (i = 0; i < sizeof(struct lzma_header); i++) {
|
|
|
++ hdr_buf[i] = rc_read(ctx);
|
|
|
++ }
|
|
|
++
|
|
|
++ ctx->pos = 0;
|
|
|
++ get_buffer(ctx);
|
|
|
++ ctx->active = true;
|
|
|
++ ctx->state = 0;
|
|
|
++ ctx->rep0 = ctx->rep1 = ctx->rep2 = ctx->rep3 = 1;
|
|
|
++
|
|
|
++ ctx->previous_byte = 0;
|
|
|
++ ctx->code = 0;
|
|
|
++ ctx->range = 0xFFFFFFFF;
|
|
|
++
|
|
|
++ ctx->dict_size = le32_to_cpu(header->dict_size);
|
|
|
++
|
|
|
++ if (header->pos >= (9 * 5 * 5))
|
|
|
++ return -1;
|
|
|
++
|
|
|
++ mi = 0;
|
|
|
++ lc = header->pos;
|
|
|
++ while (lc >= 9) {
|
|
|
++ mi++;
|
|
|
++ lc -= 9;
|
|
|
++ }
|
|
|
++ pb = 0;
|
|
|
++ lp = mi;
|
|
|
++ while (lp >= 5) {
|
|
|
++ pb++;
|
|
|
++ lp -= 5;
|
|
|
++ }
|
|
|
++ pos_state_mask = (1 << pb) - 1;
|
|
|
++ literal_pos_mask = (1 << lp) - 1;
|
|
|
++
|
|
|
++ if (ctx->dict_size == 0)
|
|
|
++ ctx->dict_size = 1;
|
|
|
++
|
|
|
++ num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
|
|
|
++ if (ctx->workspace_size < num_probs * sizeof(*p)) {
|
|
|
++ if (ctx->workspace)
|
|
|
++ vfree(ctx->workspace);
|
|
|
++ ctx->workspace = vmalloc(num_probs * sizeof(*p));
|
|
|
++ }
|
|
|
++ p = (u16 *) ctx->workspace;
|
|
|
++ if (!p)
|
|
|
++ return -1;
|
|
|
++
|
|
|
++ num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
|
|
|
++ for (i = 0; i < num_probs; i++)
|
|
|
++ p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
|
|
|
++
|
|
|
++ for (i = 0; i < 5; i++)
|
|
|
++ rc_get_code(ctx);
|
|
|
++
|
|
|
++ while (1) {
|
|
|
++ int pos_state = ctx->pos & pos_state_mask;
|
|
|
++ u16 *prob = p + LZMA_IS_MATCH +
|
|
|
++ (ctx->state << LZMA_NUM_POS_BITS_MAX) + pos_state;
|
|
|
++ if (rc_is_bit_0(ctx, prob))
|
|
|
++ process_bit0(ctx, p, pos_state, prob,
|
|
|
++ lc, literal_pos_mask);
|
|
|
++ else {
|
|
|
++ process_bit1(ctx, p, pos_state, prob);
|
|
|
++ if (ctx->rep0 == 0)
|
|
|
++ break;
|
|
|
++ }
|
|
|
++ if (unlzma_should_stop(ctx))
|
|
|
++ break;
|
|
|
++ }
|
|
|
++
|
|
|
++ return ctx->pos;
|
|
|
++}
|
|
|
++
|
|
|
++
|
|
|
++static void
|
|
|
++unlzma_reset_buf(struct unlzma_ctx *ctx)
|
|
|
++{
|
|
|
++ ctx->avail_in = 0;
|
|
|
++ ctx->next_in = NULL;
|
|
|
++ ctx->avail_out = 0;
|
|
|
++ ctx->next_out = NULL;
|
|
|
++}
|
|
|
++
|
|
|
++static int
|
|
|
++unlzma_thread(void *data)
|
|
|
++{
|
|
|
++ struct unlzma_ctx *ctx = data;
|
|
|
++
|
|
|
++ mutex_lock(&ctx->mutex);
|
|
|
++ do {
|
|
|
++ if (do_unlzma(ctx) < 0)
|
|
|
++ ctx->pos = 0;
|
|
|
++ unlzma_reset_buf(ctx);
|
|
|
++ ctx->cancel = false;
|
|
|
++ ctx->active = false;
|
|
|
++ while (ctx->head) {
|
|
|
++ struct unlzma_buffer *bh = ctx->head;
|
|
|
++ ctx->head = bh->last;
|
|
|
++ kfree(bh);
|
|
|
++ }
|
|
|
++ } while (!kthread_should_stop());
|
|
|
++ mutex_unlock(&ctx->mutex);
|
|
|
++ return 0;
|
|
|
++}
|
|
|
++
|
|
|
++
|
|
|
++static int
|
|
|
++unlzma_init(struct crypto_tfm *tfm)
|
|
|
++{
|
|
|
++ return 0;
|
|
|
++}
|
|
|
++
|
|
|
++static void
|
|
|
++unlzma_cancel(struct unlzma_ctx *ctx)
|
|
|
++{
|
|
|
++ unlzma_reset_buf(ctx);
|
|
|
++
|
|
|
++ if (!ctx->active)
|
|
|
++ return;
|
|
|
++
|
|
|
++ ctx->cancel = true;
|
|
|
++ do {
|
|
|
++ mutex_unlock(&ctx->mutex);
|
|
|
++ wake_up(&ctx->next_req);
|
|
|
++ schedule();
|
|
|
++ mutex_lock(&ctx->mutex);
|
|
|
++ } while (ctx->cancel);
|
|
|
++}
|
|
|
++
|
|
|
++
|
|
|
++static void
|
|
|
++unlzma_exit(struct crypto_tfm *tfm)
|
|
|
++{
|
|
|
++ struct unlzma_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
++
|
|
|
++ if (ctx->thread) {
|
|
|
++ unlzma_cancel(ctx);
|
|
|
++ kthread_stop(ctx->thread);
|
|
|
++ ctx->thread = NULL;
|
|
|
++ }
|
|
|
++}
|
|
|
++
|
|
|
++static int
|
|
|
++unlzma_decompress_setup(struct crypto_pcomp *tfm, void *p, unsigned int len)
|
|
|
++{
|
|
|
++ struct unlzma_ctx *ctx = crypto_tfm_ctx(crypto_pcomp_tfm(tfm));
|
|
|
++ int ret = 0;
|
|
|
++
|
|
|
++ if (ctx->thread)
|
|
|
++ return 0;
|
|
|
++
|
|
|
++ mutex_init(&ctx->mutex);
|
|
|
++ init_waitqueue_head(&ctx->next_req);
|
|
|
++ ctx->thread = kthread_run(unlzma_thread, ctx, "unlzma/%d", instance++);
|
|
|
++ if (IS_ERR(ctx->thread)) {
|
|
|
++ ret = PTR_ERR(ctx->thread);
|
|
|
++ ctx->thread = NULL;
|
|
|
++ }
|
|
|
++
|
|
|
++ return ret;
|
|
|
++}
|
|
|
++
|
|
|
++static int
|
|
|
++unlzma_decompress_init(struct crypto_pcomp *tfm)
|
|
|
++{
|
|
|
++ struct unlzma_ctx *ctx = crypto_tfm_ctx(crypto_pcomp_tfm(tfm));
|
|
|
++
|
|
|
++ ctx->pos = 0;
|
|
|
++ return 0;
|
|
|
++}
|
|
|
++
|
|
|
++static void
|
|
|
++unlzma_wait_complete(struct unlzma_ctx *ctx, bool finish)
|
|
|
++{
|
|
|
++ do {
|
|
|
++ mutex_unlock(&ctx->mutex);
|
|
|
++ wake_up(&ctx->next_req);
|
|
|
++ schedule();
|
|
|
++ mutex_lock(&ctx->mutex);
|
|
|
++ } while (ctx->active && (ctx->avail_in > 0) && (ctx->avail_out > 0));
|
|
|
++}
|
|
|
++
|
|
|
++static int
|
|
|
++unlzma_decompress_update(struct crypto_pcomp *tfm, struct comp_request *req)
|
|
|
++{
|
|
|
++ struct unlzma_ctx *ctx = crypto_tfm_ctx(crypto_pcomp_tfm(tfm));
|
|
|
++ size_t pos = 0;
|
|
|
++
|
|
|
++ mutex_lock(&ctx->mutex);
|
|
|
++ if (!ctx->active && !req->avail_in)
|
|
|
++ goto out;
|
|
|
++
|
|
|
++ pos = ctx->pos;
|
|
|
++ ctx->next_in = req->next_in;
|
|
|
++ ctx->avail_in = req->avail_in;
|
|
|
++ ctx->next_out = req->next_out;
|
|
|
++ ctx->avail_out = req->avail_out;
|
|
|
++
|
|
|
++ unlzma_wait_complete(ctx, false);
|
|
|
++
|
|
|
++ req->next_in = ctx->next_in;
|
|
|
++ req->avail_in = ctx->avail_in;
|
|
|
++ req->next_out = ctx->next_out;
|
|
|
++ req->avail_out = ctx->avail_out;
|
|
|
++ pos = ctx->pos - pos;
|
|
|
++
|
|
|
++out:
|
|
|
++ mutex_unlock(&ctx->mutex);
|
|
|
++ return pos;
|
|
|
++}
|
|
|
++
|
|
|
++static int
|
|
|
++unlzma_decompress_final(struct crypto_pcomp *tfm, struct comp_request *req)
|
|
|
++{
|
|
|
++ struct unlzma_ctx *ctx = crypto_tfm_ctx(crypto_pcomp_tfm(tfm));
|
|
|
++ int ret = 0;
|
|
|
++
|
|
|
++ /* cancel pending operation */
|
|
|
++ mutex_lock(&ctx->mutex);
|
|
|
++ if (ctx->active) {
|
|
|
++ // ret = -EINVAL;
|
|
|
++ unlzma_cancel(ctx);
|
|
|
++ }
|
|
|
++ ctx->pos = 0;
|
|
|
++ mutex_unlock(&ctx->mutex);
|
|
|
++ return ret;
|
|
|
++}
|
|
|
++
|
|
|
++
|
|
|
++static struct pcomp_alg unlzma_alg = {
|
|
|
++ .decompress_setup = unlzma_decompress_setup,
|
|
|
++ .decompress_init = unlzma_decompress_init,
|
|
|
++ .decompress_update = unlzma_decompress_update,
|
|
|
++ .decompress_final = unlzma_decompress_final,
|
|
|
++
|
|
|
++ .base = {
|
|
|
++ .cra_name = "lzma",
|
|
|
++ .cra_flags = CRYPTO_ALG_TYPE_PCOMPRESS,
|
|
|
++ .cra_ctxsize = sizeof(struct unlzma_ctx),
|
|
|
++ .cra_module = THIS_MODULE,
|
|
|
++ .cra_init = unlzma_init,
|
|
|
++ .cra_exit = unlzma_exit,
|
|
|
++ }
|
|
|
++};
|
|
|
++
|
|
|
++static int __init
|
|
|
++unlzma_mod_init(void)
|
|
|
++{
|
|
|
++ return crypto_register_pcomp(&unlzma_alg);
|
|
|
++}
|
|
|
++
|
|
|
++static void __exit
|
|
|
++unlzma_mod_exit(void)
|
|
|
++{
|
|
|
++ crypto_unregister_pcomp(&unlzma_alg);
|
|
|
++}
|
|
|
++
|
|
|
++module_init(unlzma_mod_init);
|
|
|
++module_exit(unlzma_mod_exit);
|
|
|
++
|
|
|
++MODULE_LICENSE("GPL");
|
|
|
++MODULE_DESCRIPTION("LZMA Decompression Algorithm");
|
|
|
++MODULE_AUTHOR("Felix Fietkau <[email protected]>");
|
|
|
+--- a/crypto/Kconfig
|
|
|
++++ b/crypto/Kconfig
|
|
|
+@@ -728,6 +728,12 @@ config CRYPTO_ZLIB
|
|
|
+ help
|
|
|
+ This is the zlib algorithm.
|
|
|
+
|
|
|
++config CRYPTO_UNLZMA
|
|
|
++ tristate "LZMA decompression"
|
|
|
++ select CRYPTO_PCOMP
|
|
|
++ help
|
|
|
++ This is the lzma decompression module.
|
|
|
++
|
|
|
+ config CRYPTO_LZO
|
|
|
+ tristate "LZO compression algorithm"
|
|
|
+ select CRYPTO_ALGAPI
|
|
|
+--- a/crypto/Makefile
|
|
|
++++ b/crypto/Makefile
|
|
|
+@@ -73,6 +73,7 @@ obj-$(CONFIG_CRYPTO_SEED) += seed.o
|
|
|
+ obj-$(CONFIG_CRYPTO_SALSA20) += salsa20_generic.o
|
|
|
+ obj-$(CONFIG_CRYPTO_DEFLATE) += deflate.o
|
|
|
+ obj-$(CONFIG_CRYPTO_ZLIB) += zlib.o
|
|
|
++obj-$(CONFIG_CRYPTO_UNLZMA) += unlzma.o
|
|
|
+ obj-$(CONFIG_CRYPTO_MICHAEL_MIC) += michael_mic.o
|
|
|
+ obj-$(CONFIG_CRYPTO_CRC32C) += crc32c.o
|
|
|
+ obj-$(CONFIG_CRYPTO_AUTHENC) += authenc.o
|
|
|
+--- /dev/null
|
|
|
++++ b/crypto/unlzma.h
|
|
|
+@@ -0,0 +1,80 @@
|
|
|
++/* LZMA uncompresion module for pcomp
|
|
|
++ * Copyright (C) 2009 Felix Fietkau <[email protected]>
|
|
|
++ *
|
|
|
++ * Based on:
|
|
|
++ * Initial Linux kernel adaptation
|
|
|
++ * Copyright (C) 2006 Alain < [email protected] >
|
|
|
++ *
|
|
|
++ * Based on small lzma deflate implementation/Small range coder
|
|
|
++ * implementation for lzma.
|
|
|
++ * Copyright (C) 2006 Aurelien Jacobs < [email protected] >
|
|
|
++ *
|
|
|
++ * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
|
|
|
++ * Copyright (C) 1999-2005 Igor Pavlov
|
|
|
++ *
|
|
|
++ * This program is free software; you can redistribute it and/or modify it
|
|
|
++ * under the terms of the GNU General Public License version 2 as published
|
|
|
++ * by the Free Software Foundation.
|
|
|
++ */
|
|
|
++#ifndef __UNLZMA_H
|
|
|
++#define __UNLZMA_H
|
|
|
++
|
|
|
++struct lzma_header {
|
|
|
++ __u8 pos;
|
|
|
++ __le32 dict_size;
|
|
|
++} __attribute__ ((packed)) ;
|
|
|
++
|
|
|
++
|
|
|
++#define RC_TOP_BITS 24
|
|
|
++#define RC_MOVE_BITS 5
|
|
|
++#define RC_MODEL_TOTAL_BITS 11
|
|
|
++
|
|
|
++#define LZMA_BASE_SIZE 1846
|
|
|
++#define LZMA_LIT_SIZE 768
|
|
|
++
|
|
|
++#define LZMA_NUM_POS_BITS_MAX 4
|
|
|
++
|
|
|
++#define LZMA_LEN_NUM_LOW_BITS 3
|
|
|
++#define LZMA_LEN_NUM_MID_BITS 3
|
|
|
++#define LZMA_LEN_NUM_HIGH_BITS 8
|
|
|
++
|
|
|
++#define LZMA_LEN_CHOICE 0
|
|
|
++#define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
|
|
|
++#define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
|
|
|
++#define LZMA_LEN_MID (LZMA_LEN_LOW \
|
|
|
++ + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
|
|
|
++#define LZMA_LEN_HIGH (LZMA_LEN_MID \
|
|
|
++ +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
|
|
|
++#define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
|
|
|
++
|
|
|
++#define LZMA_NUM_STATES 12
|
|
|
++#define LZMA_NUM_LIT_STATES 7
|
|
|
++
|
|
|
++#define LZMA_START_POS_MODEL_INDEX 4
|
|
|
++#define LZMA_END_POS_MODEL_INDEX 14
|
|
|
++#define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
|
|
|
++
|
|
|
++#define LZMA_NUM_POS_SLOT_BITS 6
|
|
|
++#define LZMA_NUM_LEN_TO_POS_STATES 4
|
|
|
++
|
|
|
++#define LZMA_NUM_ALIGN_BITS 4
|
|
|
++
|
|
|
++#define LZMA_MATCH_MIN_LEN 2
|
|
|
++
|
|
|
++#define LZMA_IS_MATCH 0
|
|
|
++#define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
|
|
|
++#define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
|
|
|
++#define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
|
|
|
++#define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
|
|
|
++#define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
|
|
|
++#define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
|
|
|
++ + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
|
|
|
++#define LZMA_SPEC_POS (LZMA_POS_SLOT \
|
|
|
++ +(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
|
|
|
++#define LZMA_ALIGN (LZMA_SPEC_POS \
|
|
|
++ + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
|
|
|
++#define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
|
|
|
++#define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
|
|
|
++#define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
|
|
|
++
|
|
|
++#endif
|