bcm63xx_enet.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894
  1. /*
  2. * Driver for BCM963xx builtin Ethernet mac
  3. *
  4. * Copyright (C) 2008 Maxime Bizon <[email protected]>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/init.h>
  21. #include <linux/module.h>
  22. #include <linux/clk.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/delay.h>
  25. #include <linux/ethtool.h>
  26. #include <linux/crc32.h>
  27. #include <linux/err.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/platform_device.h>
  30. #include <bcm63xx_dev_enet.h>
  31. #include "bcm63xx_enet.h"
  32. static char bcm_enet_driver_name[] = "bcm63xx_enet";
  33. static char bcm_enet_driver_version[] = "1.0";
  34. static int copybreak __read_mostly = 128;
  35. module_param(copybreak, int, 0);
  36. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  37. /* io memory shared between all devices */
  38. static void __iomem *bcm_enet_shared_base;
  39. /*
  40. * io helpers to access mac registers
  41. */
  42. static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
  43. {
  44. return bcm_readl(priv->base + off);
  45. }
  46. static inline void enet_writel(struct bcm_enet_priv *priv,
  47. u32 val, u32 off)
  48. {
  49. bcm_writel(val, priv->base + off);
  50. }
  51. /*
  52. * io helpers to access shared registers
  53. */
  54. static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
  55. {
  56. return bcm_readl(bcm_enet_shared_base + off);
  57. }
  58. static inline void enet_dma_writel(struct bcm_enet_priv *priv,
  59. u32 val, u32 off)
  60. {
  61. bcm_writel(val, bcm_enet_shared_base + off);
  62. }
  63. /*
  64. * write given data into mii register and wait for transfer to end
  65. * with timeout (average measured transfer time is 25us)
  66. */
  67. static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
  68. {
  69. int limit;
  70. /* make sure mii interrupt status is cleared */
  71. enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
  72. enet_writel(priv, data, ENET_MIIDATA_REG);
  73. wmb();
  74. /* busy wait on mii interrupt bit, with timeout */
  75. limit = 1000;
  76. do {
  77. if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
  78. break;
  79. udelay(1);
  80. } while (limit-- >= 0);
  81. return (limit < 0) ? 1 : 0;
  82. }
  83. /*
  84. * MII internal read callback
  85. */
  86. static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
  87. int regnum)
  88. {
  89. u32 tmp, val;
  90. tmp = regnum << ENET_MIIDATA_REG_SHIFT;
  91. tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
  92. tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
  93. tmp |= ENET_MIIDATA_OP_READ_MASK;
  94. if (do_mdio_op(priv, tmp))
  95. return -1;
  96. val = enet_readl(priv, ENET_MIIDATA_REG);
  97. val &= 0xffff;
  98. return val;
  99. }
  100. /*
  101. * MII internal write callback
  102. */
  103. static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
  104. int regnum, u16 value)
  105. {
  106. u32 tmp;
  107. tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
  108. tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
  109. tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
  110. tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
  111. tmp |= ENET_MIIDATA_OP_WRITE_MASK;
  112. (void)do_mdio_op(priv, tmp);
  113. return 0;
  114. }
  115. /*
  116. * MII read callback from phylib
  117. */
  118. static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
  119. int regnum)
  120. {
  121. return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
  122. }
  123. /*
  124. * MII write callback from phylib
  125. */
  126. static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
  127. int regnum, u16 value)
  128. {
  129. return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
  130. }
  131. /*
  132. * MII read callback from mii core
  133. */
  134. static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
  135. int regnum)
  136. {
  137. return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
  138. }
  139. /*
  140. * MII write callback from mii core
  141. */
  142. static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
  143. int regnum, int value)
  144. {
  145. bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
  146. }
  147. /*
  148. * refill rx queue
  149. */
  150. static int bcm_enet_refill_rx(struct net_device *dev)
  151. {
  152. struct bcm_enet_priv *priv;
  153. priv = netdev_priv(dev);
  154. while (priv->rx_desc_count < priv->rx_ring_size) {
  155. struct bcm_enet_desc *desc;
  156. struct sk_buff *skb;
  157. dma_addr_t p;
  158. int desc_idx;
  159. u32 len_stat;
  160. desc_idx = priv->rx_dirty_desc;
  161. desc = &priv->rx_desc_cpu[desc_idx];
  162. if (!priv->rx_skb[desc_idx]) {
  163. skb = netdev_alloc_skb(dev, BCMENET_MAX_RX_SIZE);
  164. if (!skb)
  165. break;
  166. priv->rx_skb[desc_idx] = skb;
  167. p = dma_map_single(&priv->pdev->dev, skb->data,
  168. BCMENET_MAX_RX_SIZE,
  169. DMA_FROM_DEVICE);
  170. desc->address = p;
  171. }
  172. len_stat = BCMENET_MAX_RX_SIZE << DMADESC_LENGTH_SHIFT;
  173. len_stat |= DMADESC_OWNER_MASK;
  174. if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
  175. len_stat |= DMADESC_WRAP_MASK;
  176. priv->rx_dirty_desc = 0;
  177. } else {
  178. priv->rx_dirty_desc++;
  179. }
  180. wmb();
  181. desc->len_stat = len_stat;
  182. priv->rx_desc_count++;
  183. /* tell dma engine we allocated one buffer */
  184. enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
  185. }
  186. /* If rx ring is still empty, set a timer to try allocating
  187. * again at a later time. */
  188. if (priv->rx_desc_count == 0 && netif_running(dev)) {
  189. dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
  190. priv->rx_timeout.expires = jiffies + HZ;
  191. add_timer(&priv->rx_timeout);
  192. }
  193. return 0;
  194. }
  195. /*
  196. * timer callback to defer refill rx queue in case we're OOM
  197. */
  198. static void bcm_enet_refill_rx_timer(unsigned long data)
  199. {
  200. struct net_device *dev;
  201. struct bcm_enet_priv *priv;
  202. dev = (struct net_device *)data;
  203. priv = netdev_priv(dev);
  204. spin_lock(&priv->rx_lock);
  205. bcm_enet_refill_rx((struct net_device *)data);
  206. spin_unlock(&priv->rx_lock);
  207. }
  208. /*
  209. * extract packet from rx queue
  210. */
  211. static int bcm_enet_receive_queue(struct net_device *dev, int budget)
  212. {
  213. struct bcm_enet_priv *priv;
  214. struct device *kdev;
  215. int processed;
  216. priv = netdev_priv(dev);
  217. kdev = &priv->pdev->dev;
  218. processed = 0;
  219. /* don't scan ring further than number of refilled
  220. * descriptor */
  221. if (budget > priv->rx_desc_count)
  222. budget = priv->rx_desc_count;
  223. do {
  224. struct bcm_enet_desc *desc;
  225. struct sk_buff *skb;
  226. int desc_idx;
  227. u32 len_stat;
  228. unsigned int len;
  229. desc_idx = priv->rx_curr_desc;
  230. desc = &priv->rx_desc_cpu[desc_idx];
  231. /* make sure we actually read the descriptor status at
  232. * each loop */
  233. rmb();
  234. len_stat = desc->len_stat;
  235. /* break if dma ownership belongs to hw */
  236. if (len_stat & DMADESC_OWNER_MASK)
  237. break;
  238. processed++;
  239. priv->rx_curr_desc++;
  240. if (priv->rx_curr_desc == priv->rx_ring_size)
  241. priv->rx_curr_desc = 0;
  242. priv->rx_desc_count--;
  243. /* if the packet does not have start of packet _and_
  244. * end of packet flag set, then just recycle it */
  245. if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
  246. priv->stats.rx_dropped++;
  247. continue;
  248. }
  249. /* recycle packet if it's marked as bad */
  250. if (unlikely(len_stat & DMADESC_ERR_MASK)) {
  251. priv->stats.rx_errors++;
  252. if (len_stat & DMADESC_OVSIZE_MASK)
  253. priv->stats.rx_length_errors++;
  254. if (len_stat & DMADESC_CRC_MASK)
  255. priv->stats.rx_crc_errors++;
  256. if (len_stat & DMADESC_UNDER_MASK)
  257. priv->stats.rx_frame_errors++;
  258. if (len_stat & DMADESC_OV_MASK)
  259. priv->stats.rx_fifo_errors++;
  260. continue;
  261. }
  262. /* valid packet */
  263. skb = priv->rx_skb[desc_idx];
  264. len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
  265. /* don't include FCS */
  266. len -= 4;
  267. if (len < copybreak) {
  268. struct sk_buff *nskb;
  269. nskb = netdev_alloc_skb(dev, len + 2);
  270. if (!nskb) {
  271. /* forget packet, just rearm desc */
  272. priv->stats.rx_dropped++;
  273. continue;
  274. }
  275. /* since we're copying the data, we can align
  276. * them properly */
  277. skb_reserve(nskb, NET_IP_ALIGN);
  278. dma_sync_single_for_cpu(kdev, desc->address,
  279. len, DMA_FROM_DEVICE);
  280. memcpy(nskb->data, skb->data, len);
  281. dma_sync_single_for_device(kdev, desc->address,
  282. len, DMA_FROM_DEVICE);
  283. skb = nskb;
  284. } else {
  285. dma_unmap_single(&priv->pdev->dev, desc->address,
  286. BCMENET_MAX_RX_SIZE, DMA_FROM_DEVICE);
  287. priv->rx_skb[desc_idx] = NULL;
  288. }
  289. skb_put(skb, len);
  290. skb->dev = dev;
  291. skb->protocol = eth_type_trans(skb, dev);
  292. priv->stats.rx_packets++;
  293. priv->stats.rx_bytes += len;
  294. dev->last_rx = jiffies;
  295. netif_receive_skb(skb);
  296. } while (--budget > 0);
  297. if (processed || !priv->rx_desc_count) {
  298. bcm_enet_refill_rx(dev);
  299. /* kick rx dma */
  300. enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
  301. ENETDMA_CHANCFG_REG(priv->rx_chan));
  302. }
  303. return processed;
  304. }
  305. /*
  306. * try to or force reclaim of transmitted buffers
  307. */
  308. static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
  309. {
  310. struct bcm_enet_priv *priv;
  311. int released;
  312. priv = netdev_priv(dev);
  313. released = 0;
  314. while (priv->tx_desc_count < priv->tx_ring_size) {
  315. struct bcm_enet_desc *desc;
  316. struct sk_buff *skb;
  317. /* We run in a bh and fight against start_xmit, which
  318. * is called with bh disabled */
  319. spin_lock(&priv->tx_lock);
  320. desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
  321. if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
  322. spin_unlock(&priv->tx_lock);
  323. break;
  324. }
  325. /* ensure other field of the descriptor were not read
  326. * before we checked ownership */
  327. rmb();
  328. skb = priv->tx_skb[priv->tx_dirty_desc];
  329. priv->tx_skb[priv->tx_dirty_desc] = NULL;
  330. dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
  331. DMA_TO_DEVICE);
  332. priv->tx_dirty_desc++;
  333. if (priv->tx_dirty_desc == priv->tx_ring_size)
  334. priv->tx_dirty_desc = 0;
  335. priv->tx_desc_count++;
  336. spin_unlock(&priv->tx_lock);
  337. if (desc->len_stat & DMADESC_UNDER_MASK)
  338. priv->stats.tx_errors++;
  339. dev_kfree_skb(skb);
  340. released++;
  341. }
  342. if (netif_queue_stopped(dev) && released)
  343. netif_wake_queue(dev);
  344. return released;
  345. }
  346. /*
  347. * poll func, called by network core
  348. */
  349. static int bcm_enet_poll(struct napi_struct *napi, int budget)
  350. {
  351. struct bcm_enet_priv *priv;
  352. struct net_device *dev;
  353. int tx_work_done, rx_work_done;
  354. priv = container_of(napi, struct bcm_enet_priv, napi);
  355. dev = priv->net_dev;
  356. /* ack interrupts */
  357. enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
  358. ENETDMA_IR_REG(priv->rx_chan));
  359. enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
  360. ENETDMA_IR_REG(priv->tx_chan));
  361. /* reclaim sent skb */
  362. tx_work_done = bcm_enet_tx_reclaim(dev, 0);
  363. spin_lock(&priv->rx_lock);
  364. rx_work_done = bcm_enet_receive_queue(dev, budget);
  365. spin_unlock(&priv->rx_lock);
  366. if (rx_work_done >= budget || tx_work_done > 0) {
  367. /* rx/tx queue is not yet empty/clean */
  368. return rx_work_done;
  369. }
  370. /* no more packet in rx/tx queue, remove device from poll
  371. * queue */
  372. netif_rx_complete(dev, napi);
  373. /* restore rx/tx interrupt */
  374. enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
  375. ENETDMA_IRMASK_REG(priv->rx_chan));
  376. enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
  377. ENETDMA_IRMASK_REG(priv->tx_chan));
  378. return rx_work_done;
  379. }
  380. /*
  381. * mac interrupt handler
  382. */
  383. static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
  384. {
  385. struct net_device *dev;
  386. struct bcm_enet_priv *priv;
  387. u32 stat;
  388. dev = dev_id;
  389. priv = netdev_priv(dev);
  390. stat = enet_readl(priv, ENET_IR_REG);
  391. if (!(stat & ENET_IR_MIB))
  392. return IRQ_NONE;
  393. /* clear & mask interrupt */
  394. enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
  395. enet_writel(priv, 0, ENET_IRMASK_REG);
  396. /* read mib registers in workqueue */
  397. schedule_work(&priv->mib_update_task);
  398. return IRQ_HANDLED;
  399. }
  400. /*
  401. * rx/tx dma interrupt handler
  402. */
  403. static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
  404. {
  405. struct net_device *dev;
  406. struct bcm_enet_priv *priv;
  407. dev = dev_id;
  408. priv = netdev_priv(dev);
  409. /* mask rx/tx interrupts */
  410. enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
  411. enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
  412. netif_rx_schedule(dev, &priv->napi);
  413. return IRQ_HANDLED;
  414. }
  415. /*
  416. * tx request callback
  417. */
  418. static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  419. {
  420. struct bcm_enet_priv *priv;
  421. struct bcm_enet_desc *desc;
  422. u32 len_stat;
  423. int ret;
  424. priv = netdev_priv(dev);
  425. /* lock against tx reclaim */
  426. spin_lock(&priv->tx_lock);
  427. /* make sure the tx hw queue is not full, should not happen
  428. * since we stop queue before it's the case */
  429. if (unlikely(!priv->tx_desc_count)) {
  430. netif_stop_queue(dev);
  431. dev_err(&priv->pdev->dev, "xmit called with no tx desc "
  432. "available?\n");
  433. ret = NETDEV_TX_BUSY;
  434. goto out_unlock;
  435. }
  436. /* point to the next available desc */
  437. desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
  438. priv->tx_skb[priv->tx_curr_desc] = skb;
  439. /* fill descriptor */
  440. desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
  441. DMA_TO_DEVICE);
  442. len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
  443. len_stat |= DMADESC_ESOP_MASK |
  444. DMADESC_APPEND_CRC |
  445. DMADESC_OWNER_MASK;
  446. priv->tx_curr_desc++;
  447. if (priv->tx_curr_desc == priv->tx_ring_size) {
  448. priv->tx_curr_desc = 0;
  449. len_stat |= DMADESC_WRAP_MASK;
  450. }
  451. priv->tx_desc_count--;
  452. /* dma might be already polling, make sure we update desc
  453. * fields in correct order */
  454. wmb();
  455. desc->len_stat = len_stat;
  456. wmb();
  457. /* kick tx dma */
  458. enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
  459. ENETDMA_CHANCFG_REG(priv->tx_chan));
  460. /* stop queue if no more desc available */
  461. if (!priv->tx_desc_count)
  462. netif_stop_queue(dev);
  463. priv->stats.tx_bytes += skb->len;
  464. priv->stats.tx_packets++;
  465. dev->trans_start = jiffies;
  466. ret = NETDEV_TX_OK;
  467. out_unlock:
  468. spin_unlock(&priv->tx_lock);
  469. return ret;
  470. }
  471. /*
  472. * Change the interface's mac address.
  473. */
  474. static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
  475. {
  476. struct bcm_enet_priv *priv;
  477. struct sockaddr *addr = p;
  478. u32 val;
  479. priv = netdev_priv(dev);
  480. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  481. /* use perfect match register 0 to store my mac address */
  482. val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
  483. (dev->dev_addr[4] << 8) | dev->dev_addr[5];
  484. enet_writel(priv, val, ENET_PML_REG(0));
  485. val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  486. val |= ENET_PMH_DATAVALID_MASK;
  487. enet_writel(priv, val, ENET_PMH_REG(0));
  488. return 0;
  489. }
  490. /*
  491. * Change rx mode (promiscous/allmulti) and update multicast list
  492. */
  493. static void bcm_enet_set_multicast_list(struct net_device *dev)
  494. {
  495. struct bcm_enet_priv *priv;
  496. struct dev_mc_list *mc_list;
  497. u32 val;
  498. int i;
  499. priv = netdev_priv(dev);
  500. val = enet_readl(priv, ENET_RXCFG_REG);
  501. if (dev->flags & IFF_PROMISC)
  502. val |= ENET_RXCFG_PROMISC_MASK;
  503. else
  504. val &= ~ENET_RXCFG_PROMISC_MASK;
  505. /* only 3 perfect match registers left, first one is used for
  506. * own mac address */
  507. if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 3)
  508. val |= ENET_RXCFG_ALLMCAST_MASK;
  509. else
  510. val &= ~ENET_RXCFG_ALLMCAST_MASK;
  511. /* no need to set perfect match registers if we catch all
  512. * multicast */
  513. if (val & ENET_RXCFG_ALLMCAST_MASK) {
  514. enet_writel(priv, val, ENET_RXCFG_REG);
  515. return;
  516. }
  517. for (i = 0, mc_list = dev->mc_list;
  518. (mc_list != NULL) && (i < dev->mc_count) && (i < 3);
  519. i++, mc_list = mc_list->next) {
  520. u8 *dmi_addr;
  521. u32 tmp;
  522. /* filter non ethernet address */
  523. if (mc_list->dmi_addrlen != 6)
  524. continue;
  525. /* update perfect match registers */
  526. dmi_addr = mc_list->dmi_addr;
  527. tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
  528. (dmi_addr[4] << 8) | dmi_addr[5];
  529. enet_writel(priv, tmp, ENET_PML_REG(i + 1));
  530. tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
  531. tmp |= ENET_PMH_DATAVALID_MASK;
  532. enet_writel(priv, tmp, ENET_PMH_REG(i + 1));
  533. }
  534. for (; i < 3; i++) {
  535. enet_writel(priv, 0, ENET_PML_REG(i + 1));
  536. enet_writel(priv, 0, ENET_PMH_REG(i + 1));
  537. }
  538. enet_writel(priv, val, ENET_RXCFG_REG);
  539. }
  540. /*
  541. * set mac duplex parameters
  542. */
  543. static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
  544. {
  545. u32 val;
  546. val = enet_readl(priv, ENET_TXCTL_REG);
  547. if (fullduplex)
  548. val |= ENET_TXCTL_FD_MASK;
  549. else
  550. val &= ~ENET_TXCTL_FD_MASK;
  551. enet_writel(priv, val, ENET_TXCTL_REG);
  552. }
  553. /*
  554. * set mac flow control parameters
  555. */
  556. static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
  557. {
  558. u32 val;
  559. /* rx flow control (pause frame handling) */
  560. val = enet_readl(priv, ENET_RXCFG_REG);
  561. if (rx_en)
  562. val |= ENET_RXCFG_ENFLOW_MASK;
  563. else
  564. val &= ~ENET_RXCFG_ENFLOW_MASK;
  565. enet_writel(priv, val, ENET_RXCFG_REG);
  566. /* tx flow control (pause frame generation) */
  567. val = enet_dma_readl(priv, ENETDMA_CFG_REG);
  568. if (tx_en)
  569. val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
  570. else
  571. val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
  572. enet_dma_writel(priv, val, ENETDMA_CFG_REG);
  573. }
  574. /*
  575. * link changed callback (from phylib)
  576. */
  577. static void bcm_enet_adjust_phy_link(struct net_device *dev)
  578. {
  579. struct bcm_enet_priv *priv;
  580. struct phy_device *phydev;
  581. int status_changed;
  582. priv = netdev_priv(dev);
  583. phydev = priv->phydev;
  584. status_changed = 0;
  585. if (priv->old_link != phydev->link) {
  586. status_changed = 1;
  587. priv->old_link = phydev->link;
  588. }
  589. /* reflect duplex change in mac configuration */
  590. if (phydev->link && phydev->duplex != priv->old_duplex) {
  591. bcm_enet_set_duplex(priv,
  592. (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
  593. status_changed = 1;
  594. priv->old_duplex = phydev->duplex;
  595. }
  596. /* enable flow control if remote advertise it (trust phylib to
  597. * check that duplex is full */
  598. if (phydev->link && phydev->pause != priv->old_pause) {
  599. int rx_pause_en, tx_pause_en;
  600. if (phydev->pause) {
  601. /* pause was advertised by lpa and us */
  602. rx_pause_en = 1;
  603. tx_pause_en = 1;
  604. } else if (!priv->pause_auto) {
  605. /* pause setting overrided by user */
  606. rx_pause_en = priv->pause_rx;
  607. tx_pause_en = priv->pause_tx;
  608. } else {
  609. rx_pause_en = 0;
  610. tx_pause_en = 0;
  611. }
  612. bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
  613. status_changed = 1;
  614. priv->old_pause = phydev->pause;
  615. }
  616. if (status_changed) {
  617. pr_info("%s: link %s", dev->name, phydev->link ?
  618. "UP" : "DOWN");
  619. if (phydev->link)
  620. printk(" - %d/%s - flow control %s", phydev->speed,
  621. DUPLEX_FULL == phydev->duplex ? "full" : "half",
  622. phydev->pause == 1 ? "rx&tx" : "off");
  623. printk("\n");
  624. }
  625. }
  626. /*
  627. * link changed callback (if phylib is not used)
  628. */
  629. static void bcm_enet_adjust_link(struct net_device *dev)
  630. {
  631. struct bcm_enet_priv *priv;
  632. priv = netdev_priv(dev);
  633. bcm_enet_set_duplex(priv, priv->force_duplex_full);
  634. bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
  635. pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
  636. dev->name,
  637. priv->force_speed_100 ? 100 : 10,
  638. priv->force_duplex_full ? "full" : "half",
  639. priv->pause_rx ? "rx" : "off",
  640. priv->pause_tx ? "tx" : "off");
  641. }
  642. /*
  643. * open callback, allocate dma rings & buffers and start rx operation
  644. */
  645. static int bcm_enet_open(struct net_device *dev)
  646. {
  647. struct bcm_enet_priv *priv;
  648. struct sockaddr addr;
  649. struct device *kdev;
  650. struct phy_device *phydev;
  651. int irq_requested, i, ret;
  652. unsigned int size;
  653. char phy_id[BUS_ID_SIZE];
  654. void *p;
  655. u32 val;
  656. priv = netdev_priv(dev);
  657. priv->rx_desc_cpu = priv->tx_desc_cpu = NULL;
  658. priv->rx_skb = priv->tx_skb = NULL;
  659. kdev = &priv->pdev->dev;
  660. if (priv->has_phy) {
  661. /* connect to PHY */
  662. snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT,
  663. priv->mac_id ? "1" : "0", priv->phy_id);
  664. phydev = phy_connect(dev, phy_id, &bcm_enet_adjust_phy_link, 0,
  665. PHY_INTERFACE_MODE_MII);
  666. if (IS_ERR(phydev)) {
  667. dev_err(kdev, "could not attach to PHY\n");
  668. return PTR_ERR(phydev);
  669. }
  670. /* mask with MAC supported features */
  671. phydev->supported &= (SUPPORTED_10baseT_Half |
  672. SUPPORTED_10baseT_Full |
  673. SUPPORTED_100baseT_Half |
  674. SUPPORTED_100baseT_Full |
  675. SUPPORTED_Autoneg |
  676. SUPPORTED_Pause |
  677. SUPPORTED_MII);
  678. phydev->advertising = phydev->supported;
  679. if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
  680. phydev->advertising |= SUPPORTED_Pause;
  681. else
  682. phydev->advertising &= ~SUPPORTED_Pause;
  683. dev_info(kdev, "attached PHY at address %d [%s]\n",
  684. phydev->addr, phydev->drv->name);
  685. priv->old_link = 0;
  686. priv->old_duplex = -1;
  687. priv->old_pause = -1;
  688. priv->phydev = phydev;
  689. }
  690. /* mask all interrupts and request them */
  691. enet_writel(priv, 0, ENET_IRMASK_REG);
  692. enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
  693. enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
  694. irq_requested = 0;
  695. ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
  696. if (ret)
  697. goto out;
  698. irq_requested++;
  699. ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
  700. IRQF_SAMPLE_RANDOM | IRQF_DISABLED, dev->name, dev);
  701. if (ret)
  702. goto out;
  703. irq_requested++;
  704. ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
  705. IRQF_DISABLED, dev->name, dev);
  706. if (ret)
  707. goto out;
  708. irq_requested++;
  709. /* initialize perfect match registers */
  710. for (i = 0; i < 4; i++) {
  711. enet_writel(priv, 0, ENET_PML_REG(i));
  712. enet_writel(priv, 0, ENET_PMH_REG(i));
  713. }
  714. /* write device mac address */
  715. memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
  716. bcm_enet_set_mac_address(dev, &addr);
  717. /* allocate rx dma ring */
  718. size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
  719. p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
  720. if (!p) {
  721. dev_err(kdev, "cannot allocate rx ring %u\n", size);
  722. ret = -ENOMEM;
  723. goto out;
  724. }
  725. memset(p, 0, size);
  726. priv->rx_desc_alloc_size = size;
  727. priv->rx_desc_cpu = p;
  728. /* allocate tx dma ring */
  729. size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
  730. p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
  731. if (!p) {
  732. dev_err(kdev, "cannot allocate tx ring\n");
  733. ret = -ENOMEM;
  734. goto out;
  735. }
  736. memset(p, 0, size);
  737. priv->tx_desc_alloc_size = size;
  738. priv->tx_desc_cpu = p;
  739. priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
  740. GFP_KERNEL);
  741. if (!priv->tx_skb) {
  742. dev_err(kdev, "cannot allocate rx skb queue\n");
  743. ret = -ENOMEM;
  744. goto out;
  745. }
  746. priv->tx_desc_count = priv->tx_ring_size;
  747. priv->tx_dirty_desc = 0;
  748. priv->tx_curr_desc = 0;
  749. spin_lock_init(&priv->tx_lock);
  750. /* init & fill rx ring with skbs */
  751. priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
  752. GFP_KERNEL);
  753. if (!priv->rx_skb) {
  754. dev_err(kdev, "cannot allocate rx skb queue\n");
  755. ret = -ENOMEM;
  756. goto out;
  757. }
  758. priv->rx_desc_count = 0;
  759. priv->rx_dirty_desc = 0;
  760. priv->rx_curr_desc = 0;
  761. /* initialize flow control buffer allocation */
  762. enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
  763. ENETDMA_BUFALLOC_REG(priv->rx_chan));
  764. if (bcm_enet_refill_rx(dev)) {
  765. dev_err(kdev, "cannot allocate rx skb queue\n");
  766. ret = -ENOMEM;
  767. goto out;
  768. }
  769. /* write rx & tx ring addresses */
  770. enet_dma_writel(priv, priv->rx_desc_dma,
  771. ENETDMA_RSTART_REG(priv->rx_chan));
  772. enet_dma_writel(priv, priv->tx_desc_dma,
  773. ENETDMA_RSTART_REG(priv->tx_chan));
  774. /* clear remaining state ram for rx & tx channel */
  775. enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->rx_chan));
  776. enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->tx_chan));
  777. enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->rx_chan));
  778. enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->tx_chan));
  779. enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->rx_chan));
  780. enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->tx_chan));
  781. /* set max rx/tx length */
  782. enet_writel(priv, BCMENET_MAX_RX_SIZE, ENET_RXMAXLEN_REG);
  783. enet_writel(priv, BCMENET_MAX_TX_SIZE, ENET_TXMAXLEN_REG);
  784. /* set dma maximum burst len */
  785. enet_dma_writel(priv, BCMENET_DMA_MAXBURST,
  786. ENETDMA_MAXBURST_REG(priv->rx_chan));
  787. enet_dma_writel(priv, BCMENET_DMA_MAXBURST,
  788. ENETDMA_MAXBURST_REG(priv->tx_chan));
  789. /* set correct transmit fifo watermark */
  790. enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
  791. /* set flow control low/high threshold to 1/3 / 2/3 */
  792. val = priv->rx_ring_size / 3;
  793. enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
  794. val = (priv->rx_ring_size * 2) / 3;
  795. enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
  796. /* all set, enable mac and interrupts, start dma engine and
  797. * kick rx dma channel */
  798. wmb();
  799. enet_writel(priv, ENET_CTL_ENABLE_MASK, ENET_CTL_REG);
  800. enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
  801. enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
  802. ENETDMA_CHANCFG_REG(priv->rx_chan));
  803. /* watch "mib counters about to overflow" interrupt */
  804. enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
  805. enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
  806. /* watch "packet transferred" interrupt in rx and tx */
  807. enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
  808. ENETDMA_IR_REG(priv->rx_chan));
  809. enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
  810. ENETDMA_IR_REG(priv->tx_chan));
  811. /* make sure we enable napi before rx interrupt */
  812. napi_enable(&priv->napi);
  813. enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
  814. ENETDMA_IRMASK_REG(priv->rx_chan));
  815. enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
  816. ENETDMA_IRMASK_REG(priv->tx_chan));
  817. if (priv->has_phy)
  818. phy_start(priv->phydev);
  819. else
  820. bcm_enet_adjust_link(dev);
  821. netif_start_queue(dev);
  822. return 0;
  823. out:
  824. phy_disconnect(priv->phydev);
  825. if (irq_requested > 2)
  826. free_irq(priv->irq_tx, dev);
  827. if (irq_requested > 1)
  828. free_irq(priv->irq_rx, dev);
  829. if (irq_requested > 0)
  830. free_irq(dev->irq, dev);
  831. for (i = 0; i < priv->rx_ring_size; i++) {
  832. struct bcm_enet_desc *desc;
  833. if (!priv->rx_skb[i])
  834. continue;
  835. desc = &priv->rx_desc_cpu[i];
  836. dma_unmap_single(kdev, desc->address, BCMENET_MAX_RX_SIZE,
  837. DMA_FROM_DEVICE);
  838. kfree_skb(priv->rx_skb[i]);
  839. }
  840. if (priv->rx_desc_cpu)
  841. dma_free_coherent(kdev, priv->rx_desc_alloc_size,
  842. priv->rx_desc_cpu, priv->rx_desc_dma);
  843. if (priv->tx_desc_cpu)
  844. dma_free_coherent(kdev, priv->tx_desc_alloc_size,
  845. priv->tx_desc_cpu, priv->tx_desc_dma);
  846. kfree(priv->rx_skb);
  847. kfree(priv->tx_skb);
  848. return ret;
  849. }
  850. /*
  851. * disable mac
  852. */
  853. static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
  854. {
  855. int limit;
  856. u32 val;
  857. val = enet_readl(priv, ENET_CTL_REG);
  858. val |= ENET_CTL_DISABLE_MASK;
  859. enet_writel(priv, val, ENET_CTL_REG);
  860. limit = 1000;
  861. do {
  862. u32 val;
  863. val = enet_readl(priv, ENET_CTL_REG);
  864. if (!(val & ENET_CTL_DISABLE_MASK))
  865. break;
  866. udelay(1);
  867. } while (limit--);
  868. }
  869. /*
  870. * disable dma in given channel
  871. */
  872. static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
  873. {
  874. int limit;
  875. enet_dma_writel(priv, 0, ENETDMA_CHANCFG_REG(chan));
  876. limit = 1000;
  877. do {
  878. u32 val;
  879. val = enet_dma_readl(priv, ENETDMA_CHANCFG_REG(chan));
  880. if (!(val & ENETDMA_CHANCFG_EN_MASK))
  881. break;
  882. udelay(1);
  883. } while (limit--);
  884. }
  885. /*
  886. * stop callback
  887. */
  888. static int bcm_enet_stop(struct net_device *dev)
  889. {
  890. struct bcm_enet_priv *priv;
  891. struct device *kdev;
  892. int i;
  893. priv = netdev_priv(dev);
  894. kdev = &priv->pdev->dev;
  895. netif_stop_queue(dev);
  896. napi_disable(&priv->napi);
  897. if (priv->has_phy)
  898. phy_stop(priv->phydev);
  899. del_timer_sync(&priv->rx_timeout);
  900. /* mask all interrupts */
  901. enet_writel(priv, 0, ENET_IRMASK_REG);
  902. enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
  903. enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
  904. /* make sure no mib update is scheduled */
  905. flush_scheduled_work();
  906. /* disable dma & mac */
  907. bcm_enet_disable_dma(priv, priv->tx_chan);
  908. bcm_enet_disable_dma(priv, priv->rx_chan);
  909. bcm_enet_disable_mac(priv);
  910. /* force reclaim of all tx buffers */
  911. bcm_enet_tx_reclaim(dev, 1);
  912. /* free the rx skb ring */
  913. for (i = 0; i < priv->rx_ring_size; i++) {
  914. struct bcm_enet_desc *desc;
  915. if (!priv->rx_skb[i])
  916. continue;
  917. desc = &priv->rx_desc_cpu[i];
  918. dma_unmap_single(kdev, desc->address, BCMENET_MAX_RX_SIZE,
  919. DMA_FROM_DEVICE);
  920. kfree_skb(priv->rx_skb[i]);
  921. }
  922. /* free remaining allocated memory */
  923. kfree(priv->rx_skb);
  924. kfree(priv->tx_skb);
  925. dma_free_coherent(kdev, priv->rx_desc_alloc_size,
  926. priv->rx_desc_cpu, priv->rx_desc_dma);
  927. dma_free_coherent(kdev, priv->tx_desc_alloc_size,
  928. priv->tx_desc_cpu, priv->tx_desc_dma);
  929. free_irq(priv->irq_tx, dev);
  930. free_irq(priv->irq_rx, dev);
  931. free_irq(dev->irq, dev);
  932. /* release phy */
  933. if (priv->has_phy) {
  934. phy_disconnect(priv->phydev);
  935. priv->phydev = NULL;
  936. }
  937. return 0;
  938. }
  939. /*
  940. * core request to return device rx/tx stats
  941. */
  942. static struct net_device_stats *bcm_enet_get_stats(struct net_device *dev)
  943. {
  944. struct bcm_enet_priv *priv;
  945. priv = netdev_priv(dev);
  946. return &priv->stats;
  947. }
  948. /*
  949. * ethtool callbacks
  950. */
  951. struct bcm_enet_stats {
  952. char stat_string[ETH_GSTRING_LEN];
  953. int sizeof_stat;
  954. int stat_offset;
  955. int mib_reg;
  956. };
  957. #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \
  958. offsetof(struct bcm_enet_priv, m)
  959. static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
  960. { "rx_packets", GEN_STAT(stats.rx_packets), -1 },
  961. { "tx_packets", GEN_STAT(stats.tx_packets), -1 },
  962. { "rx_bytes", GEN_STAT(stats.rx_bytes), -1 },
  963. { "tx_bytes", GEN_STAT(stats.tx_bytes), -1 },
  964. { "rx_errors", GEN_STAT(stats.rx_errors), -1 },
  965. { "tx_errors", GEN_STAT(stats.tx_errors), -1 },
  966. { "rx_dropped", GEN_STAT(stats.rx_dropped), -1 },
  967. { "tx_dropped", GEN_STAT(stats.tx_dropped), -1 },
  968. { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
  969. { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
  970. { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
  971. { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
  972. { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
  973. { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
  974. { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
  975. { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
  976. { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
  977. { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
  978. { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
  979. { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
  980. { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
  981. { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
  982. { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
  983. { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
  984. { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
  985. { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
  986. { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
  987. { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
  988. { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
  989. { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
  990. { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
  991. { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
  992. { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
  993. { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
  994. { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
  995. { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
  996. { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
  997. { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
  998. { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
  999. { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
  1000. { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
  1001. { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
  1002. { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
  1003. { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
  1004. { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
  1005. { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
  1006. { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
  1007. { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
  1008. { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
  1009. { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
  1010. { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
  1011. };
  1012. #define BCM_ENET_STATS_LEN \
  1013. (sizeof(bcm_enet_gstrings_stats) / sizeof(struct bcm_enet_stats))
  1014. static const u32 unused_mib_regs[] = {
  1015. ETH_MIB_TX_ALL_OCTETS,
  1016. ETH_MIB_TX_ALL_PKTS,
  1017. ETH_MIB_RX_ALL_OCTETS,
  1018. ETH_MIB_RX_ALL_PKTS,
  1019. };
  1020. static void bcm_enet_get_drvinfo(struct net_device *netdev,
  1021. struct ethtool_drvinfo *drvinfo)
  1022. {
  1023. strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
  1024. strncpy(drvinfo->version, bcm_enet_driver_version, 32);
  1025. strncpy(drvinfo->fw_version, "N/A", 32);
  1026. strncpy(drvinfo->bus_info, "bcm63xx", 32);
  1027. drvinfo->n_stats = BCM_ENET_STATS_LEN;
  1028. }
  1029. static int bcm_enet_get_stats_count(struct net_device *netdev)
  1030. {
  1031. return BCM_ENET_STATS_LEN;
  1032. }
  1033. static void bcm_enet_get_strings(struct net_device *netdev,
  1034. u32 stringset, u8 *data)
  1035. {
  1036. int i;
  1037. switch (stringset) {
  1038. case ETH_SS_STATS:
  1039. for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
  1040. memcpy(data + i * ETH_GSTRING_LEN,
  1041. bcm_enet_gstrings_stats[i].stat_string,
  1042. ETH_GSTRING_LEN);
  1043. }
  1044. break;
  1045. }
  1046. }
  1047. static void update_mib_counters(struct bcm_enet_priv *priv)
  1048. {
  1049. int i;
  1050. for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
  1051. const struct bcm_enet_stats *s;
  1052. u32 val;
  1053. char *p;
  1054. s = &bcm_enet_gstrings_stats[i];
  1055. if (s->mib_reg == -1)
  1056. continue;
  1057. val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
  1058. p = (char *)priv + s->stat_offset;
  1059. if (s->sizeof_stat == sizeof(u64))
  1060. *(u64 *)p += val;
  1061. else
  1062. *(u32 *)p += val;
  1063. }
  1064. /* also empty unused mib counters to make sure mib counter
  1065. * overflow interrupt is cleared */
  1066. for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
  1067. (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
  1068. }
  1069. static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
  1070. {
  1071. struct bcm_enet_priv *priv;
  1072. priv = container_of(t, struct bcm_enet_priv, mib_update_task);
  1073. mutex_lock(&priv->mib_update_lock);
  1074. update_mib_counters(priv);
  1075. mutex_unlock(&priv->mib_update_lock);
  1076. /* reenable mib interrupt */
  1077. if (netif_running(priv->net_dev))
  1078. enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
  1079. }
  1080. static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
  1081. struct ethtool_stats *stats,
  1082. u64 *data)
  1083. {
  1084. struct bcm_enet_priv *priv;
  1085. int i;
  1086. priv = netdev_priv(netdev);
  1087. mutex_lock(&priv->mib_update_lock);
  1088. update_mib_counters(priv);
  1089. for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
  1090. const struct bcm_enet_stats *s;
  1091. char *p;
  1092. s = &bcm_enet_gstrings_stats[i];
  1093. p = (char *)priv + s->stat_offset;
  1094. data[i] = (s->sizeof_stat == sizeof(u64)) ?
  1095. *(u64 *)p : *(u32 *)p;
  1096. }
  1097. mutex_unlock(&priv->mib_update_lock);
  1098. }
  1099. static int bcm_enet_get_settings(struct net_device *dev,
  1100. struct ethtool_cmd *cmd)
  1101. {
  1102. struct bcm_enet_priv *priv;
  1103. priv = netdev_priv(dev);
  1104. cmd->maxrxpkt = 0;
  1105. cmd->maxtxpkt = 0;
  1106. if (priv->has_phy) {
  1107. if (!priv->phydev)
  1108. return -ENODEV;
  1109. return phy_ethtool_gset(priv->phydev, cmd);
  1110. } else {
  1111. cmd->autoneg = 0;
  1112. cmd->speed = (priv->force_speed_100) ? SPEED_100 : SPEED_10;
  1113. cmd->duplex = (priv->force_duplex_full) ?
  1114. DUPLEX_FULL : DUPLEX_HALF;
  1115. cmd->supported = ADVERTISED_10baseT_Half |
  1116. ADVERTISED_10baseT_Full |
  1117. ADVERTISED_100baseT_Half |
  1118. ADVERTISED_100baseT_Full;
  1119. cmd->advertising = 0;
  1120. cmd->port = PORT_MII;
  1121. cmd->transceiver = XCVR_EXTERNAL;
  1122. }
  1123. return 0;
  1124. }
  1125. static int bcm_enet_set_settings(struct net_device *dev,
  1126. struct ethtool_cmd *cmd)
  1127. {
  1128. struct bcm_enet_priv *priv;
  1129. priv = netdev_priv(dev);
  1130. if (priv->has_phy) {
  1131. if (!priv->phydev)
  1132. return -ENODEV;
  1133. return phy_ethtool_sset(priv->phydev, cmd);
  1134. } else {
  1135. if (cmd->autoneg ||
  1136. (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) ||
  1137. cmd->port != PORT_MII)
  1138. return -EINVAL;
  1139. priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0;
  1140. priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0;
  1141. if (netif_running(dev))
  1142. bcm_enet_adjust_link(dev);
  1143. return 0;
  1144. }
  1145. }
  1146. static void bcm_enet_get_ringparam(struct net_device *dev,
  1147. struct ethtool_ringparam *ering)
  1148. {
  1149. struct bcm_enet_priv *priv;
  1150. priv = netdev_priv(dev);
  1151. /* rx/tx ring is actually only limited by memory */
  1152. ering->rx_max_pending = 8192;
  1153. ering->tx_max_pending = 8192;
  1154. ering->rx_mini_max_pending = 0;
  1155. ering->rx_jumbo_max_pending = 0;
  1156. ering->rx_pending = priv->rx_ring_size;
  1157. ering->tx_pending = priv->tx_ring_size;
  1158. }
  1159. static int bcm_enet_set_ringparam(struct net_device *dev,
  1160. struct ethtool_ringparam *ering)
  1161. {
  1162. struct bcm_enet_priv *priv;
  1163. int was_running;
  1164. priv = netdev_priv(dev);
  1165. was_running = 0;
  1166. if (netif_running(dev)) {
  1167. bcm_enet_stop(dev);
  1168. was_running = 1;
  1169. }
  1170. priv->rx_ring_size = ering->rx_pending;
  1171. priv->tx_ring_size = ering->tx_pending;
  1172. if (was_running) {
  1173. int err;
  1174. err = bcm_enet_open(dev);
  1175. if (err)
  1176. dev_close(dev);
  1177. else
  1178. bcm_enet_set_multicast_list(dev);
  1179. }
  1180. return 0;
  1181. }
  1182. static void bcm_enet_get_pauseparam(struct net_device *dev,
  1183. struct ethtool_pauseparam *ecmd)
  1184. {
  1185. struct bcm_enet_priv *priv;
  1186. priv = netdev_priv(dev);
  1187. ecmd->autoneg = priv->pause_auto;
  1188. ecmd->rx_pause = priv->pause_rx;
  1189. ecmd->tx_pause = priv->pause_tx;
  1190. }
  1191. static int bcm_enet_set_pauseparam(struct net_device *dev,
  1192. struct ethtool_pauseparam *ecmd)
  1193. {
  1194. struct bcm_enet_priv *priv;
  1195. priv = netdev_priv(dev);
  1196. if (priv->has_phy) {
  1197. if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
  1198. /* asymetric pause mode not supported,
  1199. * actually possible but integrated PHY has RO
  1200. * asym_pause bit */
  1201. return -EINVAL;
  1202. }
  1203. } else {
  1204. /* no pause autoneg on direct mii connection */
  1205. if (ecmd->autoneg)
  1206. return -EINVAL;
  1207. }
  1208. priv->pause_auto = ecmd->autoneg;
  1209. priv->pause_rx = ecmd->rx_pause;
  1210. priv->pause_tx = ecmd->tx_pause;
  1211. return 0;
  1212. }
  1213. static struct ethtool_ops bcm_enet_ethtool_ops = {
  1214. .get_strings = bcm_enet_get_strings,
  1215. .get_stats_count = bcm_enet_get_stats_count,
  1216. .get_ethtool_stats = bcm_enet_get_ethtool_stats,
  1217. .get_settings = bcm_enet_get_settings,
  1218. .set_settings = bcm_enet_set_settings,
  1219. .get_drvinfo = bcm_enet_get_drvinfo,
  1220. .get_link = ethtool_op_get_link,
  1221. .get_ringparam = bcm_enet_get_ringparam,
  1222. .set_ringparam = bcm_enet_set_ringparam,
  1223. .get_pauseparam = bcm_enet_get_pauseparam,
  1224. .set_pauseparam = bcm_enet_set_pauseparam,
  1225. };
  1226. static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  1227. {
  1228. struct bcm_enet_priv *priv;
  1229. priv = netdev_priv(dev);
  1230. if (priv->has_phy) {
  1231. if (!priv->phydev)
  1232. return -ENODEV;
  1233. return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
  1234. } else {
  1235. struct mii_if_info mii;
  1236. mii.dev = dev;
  1237. mii.mdio_read = bcm_enet_mdio_read_mii;
  1238. mii.mdio_write = bcm_enet_mdio_write_mii;
  1239. mii.phy_id = 0;
  1240. mii.phy_id_mask = 0x3f;
  1241. mii.reg_num_mask = 0x1f;
  1242. return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
  1243. }
  1244. }
  1245. /*
  1246. * preinit hardware to allow mii operation while device is down
  1247. */
  1248. static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
  1249. {
  1250. u32 val;
  1251. int limit;
  1252. /* make sure mac is disabled */
  1253. bcm_enet_disable_mac(priv);
  1254. /* soft reset mac */
  1255. val = ENET_CTL_SRESET_MASK;
  1256. enet_writel(priv, val, ENET_CTL_REG);
  1257. wmb();
  1258. limit = 1000;
  1259. do {
  1260. val = enet_readl(priv, ENET_CTL_REG);
  1261. if (!(val & ENET_CTL_SRESET_MASK))
  1262. break;
  1263. udelay(1);
  1264. } while (limit--);
  1265. /* select correct mii interface */
  1266. val = enet_readl(priv, ENET_CTL_REG);
  1267. if (priv->use_external_mii)
  1268. val |= ENET_CTL_EPHYSEL_MASK;
  1269. else
  1270. val &= ~ENET_CTL_EPHYSEL_MASK;
  1271. enet_writel(priv, val, ENET_CTL_REG);
  1272. /* turn on mdc clock */
  1273. enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
  1274. ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
  1275. /* set mib counters to self-clear when read */
  1276. val = enet_readl(priv, ENET_MIBCTL_REG);
  1277. val |= ENET_MIBCTL_RDCLEAR_MASK;
  1278. enet_writel(priv, val, ENET_MIBCTL_REG);
  1279. }
  1280. /*
  1281. * allocate netdevice, request register memory and register device.
  1282. */
  1283. static int __devinit bcm_enet_probe(struct platform_device *pdev)
  1284. {
  1285. struct bcm_enet_priv *priv;
  1286. struct net_device *dev;
  1287. struct bcm63xx_enet_platform_data *pd;
  1288. struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
  1289. struct mii_bus *bus;
  1290. const char *clk_name;
  1291. unsigned int iomem_size;
  1292. int i, ret, mdio_registered, mem_requested;
  1293. /* stop if shared driver failed, assume driver->probe will be
  1294. * called in the same order we register devices (correct ?) */
  1295. if (!bcm_enet_shared_base)
  1296. return -ENODEV;
  1297. mdio_registered = mem_requested = 0;
  1298. res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1299. res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  1300. res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
  1301. res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
  1302. if (!res_mem || !res_irq || !res_irq_rx || !res_irq_tx)
  1303. return -ENODEV;
  1304. ret = 0;
  1305. dev = alloc_etherdev(sizeof(*priv));
  1306. if (!dev)
  1307. return -ENOMEM;
  1308. priv = netdev_priv(dev);
  1309. memset(priv, 0, sizeof(*priv));
  1310. iomem_size = res_mem->end - res_mem->start + 1;
  1311. if (!request_mem_region(res_mem->start, iomem_size, "bcm63xx_enet")) {
  1312. ret = -EBUSY;
  1313. goto err;
  1314. }
  1315. mem_requested = 1;
  1316. priv->base = ioremap(res_mem->start, iomem_size);
  1317. if (priv->base == NULL) {
  1318. ret = -ENOMEM;
  1319. goto err;
  1320. }
  1321. dev->irq = priv->irq = res_irq->start;
  1322. priv->irq_rx = res_irq_rx->start;
  1323. priv->irq_tx = res_irq_tx->start;
  1324. priv->mac_id = pdev->id;
  1325. /* get rx & tx dma channel id for this mac */
  1326. if (priv->mac_id == 0) {
  1327. priv->rx_chan = 0;
  1328. priv->tx_chan = 1;
  1329. clk_name = "enet0";
  1330. } else {
  1331. priv->rx_chan = 2;
  1332. priv->tx_chan = 3;
  1333. clk_name = "enet1";
  1334. }
  1335. priv->mac_clk = clk_get(&pdev->dev, clk_name);
  1336. if (IS_ERR(priv->mac_clk)) {
  1337. ret = PTR_ERR(priv->mac_clk);
  1338. priv->mac_clk = NULL;
  1339. goto err;
  1340. }
  1341. clk_enable(priv->mac_clk);
  1342. /* initialize default and fetch platform data */
  1343. priv->rx_ring_size = BCMENET_DEF_RX_DESC;
  1344. priv->tx_ring_size = BCMENET_DEF_TX_DESC;
  1345. pd = pdev->dev.platform_data;
  1346. if (pd) {
  1347. memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
  1348. priv->has_phy = pd->has_phy;
  1349. priv->phy_id = pd->phy_id;
  1350. priv->has_phy_interrupt = pd->has_phy_interrupt;
  1351. priv->phy_interrupt = pd->phy_interrupt;
  1352. priv->use_external_mii = !pd->use_internal_phy;
  1353. priv->pause_auto = pd->pause_auto;
  1354. priv->pause_rx = pd->pause_rx;
  1355. priv->pause_tx = pd->pause_tx;
  1356. priv->force_duplex_full = pd->force_duplex_full;
  1357. priv->force_speed_100 = pd->force_speed_100;
  1358. }
  1359. if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
  1360. /* using internal PHY, enable clock */
  1361. priv->phy_clk = clk_get(&pdev->dev, "ephy");
  1362. if (IS_ERR(priv->phy_clk)) {
  1363. ret = PTR_ERR(priv->phy_clk);
  1364. priv->phy_clk = NULL;
  1365. goto err;
  1366. }
  1367. clk_enable(priv->phy_clk);
  1368. }
  1369. /* do minimal hardware init to be able to probe mii bus */
  1370. bcm_enet_hw_preinit(priv);
  1371. /* MII bus registration */
  1372. if (priv->has_phy) {
  1373. bus = &priv->mii_bus;
  1374. bus->name = "bcm63xx_enet MII bus";
  1375. bus->dev = &pdev->dev;
  1376. bus->priv = priv;
  1377. bus->read = bcm_enet_mdio_read_phylib;
  1378. bus->write = bcm_enet_mdio_write_phylib;
  1379. sprintf(bus->id, "%d", priv->mac_id);
  1380. /* only probe bus where we think the PHY is, because
  1381. * the mdio read operation return 0 instead of 0xffff
  1382. * if a slave is not present on hw */
  1383. bus->phy_mask = ~(1 << priv->phy_id);
  1384. bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
  1385. if (!bus->irq) {
  1386. ret = -ENOMEM;
  1387. goto err;
  1388. }
  1389. if (priv->has_phy_interrupt)
  1390. bus->irq[priv->phy_id] = priv->phy_interrupt;
  1391. else
  1392. bus->irq[priv->phy_id] = PHY_POLL;
  1393. ret = mdiobus_register(bus);
  1394. if (ret) {
  1395. dev_err(&pdev->dev, "unable to register mdio bus\n");
  1396. goto err;
  1397. }
  1398. mdio_registered = 1;
  1399. } else {
  1400. /* run platform code to initialize PHY device */
  1401. if (pd->mii_config &&
  1402. pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
  1403. bcm_enet_mdio_write_mii)) {
  1404. dev_err(&pdev->dev, "unable to configure mdio bus\n");
  1405. goto err;
  1406. }
  1407. }
  1408. spin_lock_init(&priv->rx_lock);
  1409. /* init rx timeout (used for oom) */
  1410. init_timer(&priv->rx_timeout);
  1411. priv->rx_timeout.function = bcm_enet_refill_rx_timer;
  1412. priv->rx_timeout.data = (unsigned long)dev;
  1413. /* init the mib update lock&work */
  1414. mutex_init(&priv->mib_update_lock);
  1415. INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
  1416. /* zero mib counters */
  1417. for (i = 0; i < ENET_MIB_REG_COUNT; i++)
  1418. enet_writel(priv, 0, ENET_MIB_REG(i));
  1419. /* register netdevice */
  1420. dev->open = bcm_enet_open;
  1421. dev->stop = bcm_enet_stop;
  1422. dev->hard_start_xmit = bcm_enet_start_xmit;
  1423. dev->get_stats = bcm_enet_get_stats;
  1424. dev->set_mac_address = bcm_enet_set_mac_address;
  1425. dev->set_multicast_list = bcm_enet_set_multicast_list;
  1426. netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
  1427. dev->do_ioctl = bcm_enet_ioctl;
  1428. #ifdef CONFIG_NET_POLL_CONTROLLER
  1429. dev->poll_controller = bcm_enet_netpoll;
  1430. #endif
  1431. SET_ETHTOOL_OPS(dev, &bcm_enet_ethtool_ops);
  1432. ret = register_netdev(dev);
  1433. if (ret)
  1434. goto err;
  1435. platform_set_drvdata(pdev, dev);
  1436. priv->pdev = pdev;
  1437. priv->net_dev = dev;
  1438. SET_NETDEV_DEV(dev, &pdev->dev);
  1439. return 0;
  1440. err:
  1441. if (mem_requested)
  1442. release_mem_region(res_mem->start, iomem_size);
  1443. if (mdio_registered)
  1444. mdiobus_unregister(&priv->mii_bus);
  1445. kfree(priv->mii_bus.irq);
  1446. if (priv->mac_clk) {
  1447. clk_disable(priv->mac_clk);
  1448. clk_put(priv->mac_clk);
  1449. }
  1450. if (priv->phy_clk) {
  1451. clk_disable(priv->phy_clk);
  1452. clk_put(priv->phy_clk);
  1453. }
  1454. if (priv->base) {
  1455. /* turn off mdc clock */
  1456. enet_writel(priv, 0, ENET_MIISC_REG);
  1457. iounmap(priv->base);
  1458. }
  1459. free_netdev(dev);
  1460. return ret;
  1461. }
  1462. /*
  1463. * exit func, stops hardware and unregisters netdevice
  1464. */
  1465. static int __devexit bcm_enet_remove(struct platform_device *pdev)
  1466. {
  1467. struct bcm_enet_priv *priv;
  1468. struct net_device *dev;
  1469. struct resource *res;
  1470. /* stop netdevice */
  1471. dev = platform_get_drvdata(pdev);
  1472. priv = netdev_priv(dev);
  1473. unregister_netdev(dev);
  1474. /* turn off mdc clock */
  1475. enet_writel(priv, 0, ENET_MIISC_REG);
  1476. if (priv->has_phy) {
  1477. mdiobus_unregister(&priv->mii_bus);
  1478. kfree(priv->mii_bus.irq);
  1479. } else {
  1480. struct bcm63xx_enet_platform_data *pd;
  1481. pd = pdev->dev.platform_data;
  1482. if (pd && pd->mii_config)
  1483. pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
  1484. bcm_enet_mdio_write_mii);
  1485. }
  1486. /* release device resources */
  1487. iounmap(priv->base);
  1488. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1489. release_mem_region(res->start, res->end - res->start + 1);
  1490. /* disable hw block clocks */
  1491. if (priv->phy_clk) {
  1492. clk_disable(priv->phy_clk);
  1493. clk_put(priv->phy_clk);
  1494. }
  1495. clk_disable(priv->mac_clk);
  1496. clk_put(priv->mac_clk);
  1497. free_netdev(dev);
  1498. return 0;
  1499. }
  1500. struct platform_driver bcm63xx_enet_driver = {
  1501. .probe = bcm_enet_probe,
  1502. .remove = __devexit_p(bcm_enet_remove),
  1503. .driver = {
  1504. .name = "bcm63xx_enet",
  1505. .owner = THIS_MODULE,
  1506. },
  1507. };
  1508. /*
  1509. * reserve & remap memory space shared between all macs
  1510. */
  1511. static int __devinit bcm_enet_shared_probe(struct platform_device *pdev)
  1512. {
  1513. struct resource *res;
  1514. unsigned int iomem_size;
  1515. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1516. if (!res)
  1517. return -ENODEV;
  1518. iomem_size = res->end - res->start + 1;
  1519. if (!request_mem_region(res->start, iomem_size, "bcm63xx_enet_dma"))
  1520. return -EBUSY;
  1521. bcm_enet_shared_base = ioremap(res->start, iomem_size);
  1522. if (!bcm_enet_shared_base) {
  1523. release_mem_region(res->start, iomem_size);
  1524. return -ENOMEM;
  1525. }
  1526. return 0;
  1527. }
  1528. static int __devexit bcm_enet_shared_remove(struct platform_device *pdev)
  1529. {
  1530. struct resource *res;
  1531. iounmap(bcm_enet_shared_base);
  1532. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1533. release_mem_region(res->start, res->end - res->start + 1);
  1534. return 0;
  1535. }
  1536. /*
  1537. * this "shared" driver is needed because both macs share a single
  1538. * address space
  1539. */
  1540. struct platform_driver bcm63xx_enet_shared_driver = {
  1541. .probe = bcm_enet_shared_probe,
  1542. .remove = __devexit_p(bcm_enet_shared_remove),
  1543. .driver = {
  1544. .name = "bcm63xx_enet_shared",
  1545. .owner = THIS_MODULE,
  1546. },
  1547. };
  1548. /*
  1549. * entry point
  1550. */
  1551. static int __init bcm_enet_init(void)
  1552. {
  1553. int ret;
  1554. ret = platform_driver_register(&bcm63xx_enet_shared_driver);
  1555. if (ret)
  1556. return ret;
  1557. ret = platform_driver_register(&bcm63xx_enet_driver);
  1558. if (ret)
  1559. platform_driver_unregister(&bcm63xx_enet_shared_driver);
  1560. return ret;
  1561. }
  1562. static void __exit bcm_enet_exit(void)
  1563. {
  1564. platform_driver_unregister(&bcm63xx_enet_driver);
  1565. platform_driver_unregister(&bcm63xx_enet_shared_driver);
  1566. }
  1567. module_init(bcm_enet_init);
  1568. module_exit(bcm_enet_exit);
  1569. MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
  1570. MODULE_AUTHOR("Maxime Bizon <[email protected]>");
  1571. MODULE_LICENSE("GPL");