bcm6368-enetsw.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * BCM6368 Ethernet Switch Controller Driver
  4. *
  5. * Copyright (C) 2021 Álvaro Fernández Rojas <[email protected]>
  6. * Copyright (C) 2015 Jonas Gorski <[email protected]>
  7. * Copyright (C) 2008 Maxime Bizon <[email protected]>
  8. */
  9. #include <linux/clk.h>
  10. #include <linux/delay.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/err.h>
  13. #include <linux/ethtool.h>
  14. #include <linux/if_vlan.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/of_clk.h>
  17. #include <linux/of_net.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/pm_domain.h>
  20. #include <linux/pm_runtime.h>
  21. #include <linux/reset.h>
  22. #include <linux/version.h>
  23. /* TODO: Bigger frames may work but we do not trust that they are safe on all
  24. * platforms so more research is needed, a max frame size of 2048 has been
  25. * tested. We use the safe frame size 1542 which is 1532 plus DSA and VLAN
  26. * overhead.
  27. */
  28. #define ENETSW_MAX_FRAME 1542
  29. #define ENETSW_DSA_TAG_SIZE 6
  30. /* The MTU in Linux does not include ethernet or VLAN headers, but it DOES
  31. * include the DSA overhead (the framework will increase the MTU to fit
  32. * any DSA header).
  33. */
  34. #define ENETSW_MAX_MTU (ENETSW_MAX_FRAME - VLAN_ETH_HLEN - \
  35. VLAN_HLEN)
  36. #define ENETSW_FRAG_SIZE(x) (SKB_DATA_ALIGN(NET_SKB_PAD + x + \
  37. SKB_DATA_ALIGN(sizeof(struct skb_shared_info))))
  38. /* default number of descriptor */
  39. #define ENETSW_DEF_RX_DESC 64
  40. #define ENETSW_DEF_TX_DESC 32
  41. #define ENETSW_DEF_CPY_BREAK 128
  42. /* maximum burst len for dma (4 bytes unit) */
  43. #define ENETSW_DMA_MAXBURST 8
  44. /* DMA channels */
  45. #define DMA_CHAN_WIDTH 0x10
  46. /* Controller Configuration Register */
  47. #define DMA_CFG_REG 0x0
  48. #define DMA_CFG_EN_SHIFT 0
  49. #define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
  50. #define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
  51. /* Flow Control Descriptor Low Threshold register */
  52. #define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
  53. /* Flow Control Descriptor High Threshold register */
  54. #define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
  55. /* Flow Control Descriptor Buffer Alloca Threshold register */
  56. #define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
  57. #define DMA_BUFALLOC_FORCE_SHIFT 31
  58. #define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
  59. /* Channel Configuration register */
  60. #define DMAC_CHANCFG_REG 0x0
  61. #define DMAC_CHANCFG_EN_SHIFT 0
  62. #define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
  63. #define DMAC_CHANCFG_PKTHALT_SHIFT 1
  64. #define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
  65. #define DMAC_CHANCFG_BUFHALT_SHIFT 2
  66. #define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
  67. #define DMAC_CHANCFG_CHAINING_SHIFT 2
  68. #define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
  69. #define DMAC_CHANCFG_WRAP_EN_SHIFT 3
  70. #define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
  71. #define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
  72. #define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
  73. /* Interrupt Control/Status register */
  74. #define DMAC_IR_REG 0x4
  75. #define DMAC_IR_BUFDONE_MASK (1 << 0)
  76. #define DMAC_IR_PKTDONE_MASK (1 << 1)
  77. #define DMAC_IR_NOTOWNER_MASK (1 << 2)
  78. /* Interrupt Mask register */
  79. #define DMAC_IRMASK_REG 0x8
  80. /* Maximum Burst Length */
  81. #define DMAC_MAXBURST_REG 0xc
  82. /* Ring Start Address register */
  83. #define DMAS_RSTART_REG 0x0
  84. /* State Ram Word 2 */
  85. #define DMAS_SRAM2_REG 0x4
  86. /* State Ram Word 3 */
  87. #define DMAS_SRAM3_REG 0x8
  88. /* State Ram Word 4 */
  89. #define DMAS_SRAM4_REG 0xc
  90. struct bcm6368_enetsw_desc {
  91. u32 len_stat;
  92. u32 address;
  93. };
  94. /* control */
  95. #define DMADESC_LENGTH_SHIFT 16
  96. #define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
  97. #define DMADESC_OWNER_MASK (1 << 15)
  98. #define DMADESC_EOP_MASK (1 << 14)
  99. #define DMADESC_SOP_MASK (1 << 13)
  100. #define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
  101. #define DMADESC_WRAP_MASK (1 << 12)
  102. #define DMADESC_USB_NOZERO_MASK (1 << 1)
  103. #define DMADESC_USB_ZERO_MASK (1 << 0)
  104. /* status */
  105. #define DMADESC_UNDER_MASK (1 << 9)
  106. #define DMADESC_APPEND_CRC (1 << 8)
  107. #define DMADESC_OVSIZE_MASK (1 << 4)
  108. #define DMADESC_RXER_MASK (1 << 2)
  109. #define DMADESC_CRC_MASK (1 << 1)
  110. #define DMADESC_OV_MASK (1 << 0)
  111. #define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
  112. DMADESC_OVSIZE_MASK | \
  113. DMADESC_RXER_MASK | \
  114. DMADESC_CRC_MASK | \
  115. DMADESC_OV_MASK)
  116. struct bcm6368_enetsw {
  117. void __iomem *dma_base;
  118. void __iomem *dma_chan;
  119. void __iomem *dma_sram;
  120. struct device **pm;
  121. struct device_link **link_pm;
  122. int num_pms;
  123. struct clk **clock;
  124. unsigned int num_clocks;
  125. struct reset_control **reset;
  126. unsigned int num_resets;
  127. int copybreak;
  128. int irq_rx;
  129. int irq_tx;
  130. /* hw view of rx & tx dma ring */
  131. dma_addr_t rx_desc_dma;
  132. dma_addr_t tx_desc_dma;
  133. /* allocated size (in bytes) for rx & tx dma ring */
  134. unsigned int rx_desc_alloc_size;
  135. unsigned int tx_desc_alloc_size;
  136. struct napi_struct napi;
  137. /* dma channel id for rx */
  138. int rx_chan;
  139. /* number of dma desc in rx ring */
  140. int rx_ring_size;
  141. /* cpu view of rx dma ring */
  142. struct bcm6368_enetsw_desc *rx_desc_cpu;
  143. /* current number of armed descriptor given to hardware for rx */
  144. int rx_desc_count;
  145. /* next rx descriptor to fetch from hardware */
  146. int rx_curr_desc;
  147. /* next dirty rx descriptor to refill */
  148. int rx_dirty_desc;
  149. /* size of allocated rx buffer */
  150. unsigned int rx_buf_size;
  151. /* size of allocated rx frag */
  152. unsigned int rx_frag_size;
  153. /* list of buffer given to hw for rx */
  154. unsigned char **rx_buf;
  155. /* used when rx buffer allocation failed, so we defer rx queue
  156. * refill */
  157. struct timer_list rx_timeout;
  158. /* lock rx_timeout against rx normal operation */
  159. spinlock_t rx_lock;
  160. /* dma channel id for tx */
  161. int tx_chan;
  162. /* number of dma desc in tx ring */
  163. int tx_ring_size;
  164. /* cpu view of rx dma ring */
  165. struct bcm6368_enetsw_desc *tx_desc_cpu;
  166. /* number of available descriptor for tx */
  167. int tx_desc_count;
  168. /* next tx descriptor avaiable */
  169. int tx_curr_desc;
  170. /* next dirty tx descriptor to reclaim */
  171. int tx_dirty_desc;
  172. /* list of skb given to hw for tx */
  173. struct sk_buff **tx_skb;
  174. /* lock used by tx reclaim and xmit */
  175. spinlock_t tx_lock;
  176. /* network device reference */
  177. struct net_device *net_dev;
  178. /* platform device reference */
  179. struct platform_device *pdev;
  180. };
  181. static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
  182. {
  183. __raw_writel(val, priv->dma_base + off);
  184. }
  185. static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
  186. {
  187. return __raw_readl(priv->dma_chan + off + chan * DMA_CHAN_WIDTH);
  188. }
  189. static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val, u32 off,
  190. int chan)
  191. {
  192. __raw_writel(val, priv->dma_chan + off + chan * DMA_CHAN_WIDTH);
  193. }
  194. static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
  195. u32 off, int chan)
  196. {
  197. __raw_writel(val, priv->dma_sram + off + chan * DMA_CHAN_WIDTH);
  198. }
  199. /*
  200. * refill rx queue
  201. */
  202. static int bcm6368_enetsw_refill_rx(struct net_device *ndev, bool napi_mode)
  203. {
  204. struct bcm6368_enetsw *priv = netdev_priv(ndev);
  205. struct platform_device *pdev = priv->pdev;
  206. struct device *dev = &pdev->dev;
  207. while (priv->rx_desc_count < priv->rx_ring_size) {
  208. struct bcm6368_enetsw_desc *desc;
  209. int desc_idx;
  210. u32 len_stat;
  211. desc_idx = priv->rx_dirty_desc;
  212. desc = &priv->rx_desc_cpu[desc_idx];
  213. if (!priv->rx_buf[desc_idx]) {
  214. unsigned char *buf;
  215. dma_addr_t p;
  216. if (likely(napi_mode))
  217. buf = napi_alloc_frag(priv->rx_frag_size);
  218. else
  219. buf = netdev_alloc_frag(priv->rx_frag_size);
  220. if (unlikely(!buf))
  221. break;
  222. p = dma_map_single(dev, buf + NET_SKB_PAD,
  223. priv->rx_buf_size, DMA_FROM_DEVICE);
  224. if (unlikely(dma_mapping_error(dev, p))) {
  225. skb_free_frag(buf);
  226. break;
  227. }
  228. priv->rx_buf[desc_idx] = buf;
  229. desc->address = p;
  230. }
  231. len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
  232. len_stat |= DMADESC_OWNER_MASK;
  233. if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
  234. len_stat |= DMADESC_WRAP_MASK;
  235. priv->rx_dirty_desc = 0;
  236. } else {
  237. priv->rx_dirty_desc++;
  238. }
  239. wmb();
  240. desc->len_stat = len_stat;
  241. priv->rx_desc_count++;
  242. /* tell dma engine we allocated one buffer */
  243. dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
  244. }
  245. /* If rx ring is still empty, set a timer to try allocating
  246. * again at a later time. */
  247. if (priv->rx_desc_count == 0 && netif_running(ndev)) {
  248. dev_warn(dev, "unable to refill rx ring\n");
  249. priv->rx_timeout.expires = jiffies + HZ;
  250. add_timer(&priv->rx_timeout);
  251. }
  252. return 0;
  253. }
  254. /*
  255. * timer callback to defer refill rx queue in case we're OOM
  256. */
  257. static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
  258. {
  259. struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
  260. struct net_device *ndev = priv->net_dev;
  261. spin_lock(&priv->rx_lock);
  262. bcm6368_enetsw_refill_rx(ndev, false);
  263. spin_unlock(&priv->rx_lock);
  264. }
  265. /*
  266. * extract packet from rx queue
  267. */
  268. static int bcm6368_enetsw_receive_queue(struct net_device *ndev, int budget)
  269. {
  270. struct bcm6368_enetsw *priv = netdev_priv(ndev);
  271. struct platform_device *pdev = priv->pdev;
  272. struct device *dev = &pdev->dev;
  273. struct list_head rx_list;
  274. struct sk_buff *skb;
  275. int processed = 0;
  276. INIT_LIST_HEAD(&rx_list);
  277. /* don't scan ring further than number of refilled
  278. * descriptor */
  279. if (budget > priv->rx_desc_count)
  280. budget = priv->rx_desc_count;
  281. do {
  282. struct bcm6368_enetsw_desc *desc;
  283. unsigned int frag_size;
  284. unsigned char *buf;
  285. int desc_idx;
  286. u32 len_stat;
  287. unsigned int len;
  288. desc_idx = priv->rx_curr_desc;
  289. desc = &priv->rx_desc_cpu[desc_idx];
  290. /* make sure we actually read the descriptor status at
  291. * each loop */
  292. rmb();
  293. len_stat = desc->len_stat;
  294. /* break if dma ownership belongs to hw */
  295. if (len_stat & DMADESC_OWNER_MASK)
  296. break;
  297. processed++;
  298. priv->rx_curr_desc++;
  299. if (priv->rx_curr_desc == priv->rx_ring_size)
  300. priv->rx_curr_desc = 0;
  301. /* if the packet does not have start of packet _and_
  302. * end of packet flag set, then just recycle it */
  303. if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
  304. ndev->stats.rx_dropped++;
  305. continue;
  306. }
  307. /* valid packet */
  308. buf = priv->rx_buf[desc_idx];
  309. len = (len_stat & DMADESC_LENGTH_MASK)
  310. >> DMADESC_LENGTH_SHIFT;
  311. /* don't include FCS */
  312. len -= 4;
  313. if (len < priv->copybreak) {
  314. unsigned int nfrag_size = ENETSW_FRAG_SIZE(len);
  315. unsigned char *nbuf = napi_alloc_frag(nfrag_size);
  316. if (unlikely(!nbuf)) {
  317. /* forget packet, just rearm desc */
  318. ndev->stats.rx_dropped++;
  319. continue;
  320. }
  321. dma_sync_single_for_cpu(dev, desc->address,
  322. len, DMA_FROM_DEVICE);
  323. memcpy(nbuf + NET_SKB_PAD, buf + NET_SKB_PAD, len);
  324. dma_sync_single_for_device(dev, desc->address,
  325. len, DMA_FROM_DEVICE);
  326. buf = nbuf;
  327. frag_size = nfrag_size;
  328. } else {
  329. dma_unmap_single(dev, desc->address,
  330. priv->rx_buf_size, DMA_FROM_DEVICE);
  331. priv->rx_buf[desc_idx] = NULL;
  332. frag_size = priv->rx_frag_size;
  333. }
  334. skb = napi_build_skb(buf, frag_size);
  335. if (unlikely(!skb)) {
  336. skb_free_frag(buf);
  337. ndev->stats.rx_dropped++;
  338. continue;
  339. }
  340. skb_reserve(skb, NET_SKB_PAD);
  341. skb_put(skb, len);
  342. ndev->stats.rx_packets++;
  343. ndev->stats.rx_bytes += len;
  344. list_add_tail(&skb->list, &rx_list);
  345. } while (processed < budget);
  346. list_for_each_entry(skb, &rx_list, list)
  347. skb->protocol = eth_type_trans(skb, ndev);
  348. netif_receive_skb_list(&rx_list);
  349. priv->rx_desc_count -= processed;
  350. if (processed || !priv->rx_desc_count) {
  351. bcm6368_enetsw_refill_rx(ndev, true);
  352. /* kick rx dma */
  353. dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
  354. DMAC_CHANCFG_REG, priv->rx_chan);
  355. }
  356. return processed;
  357. }
  358. /*
  359. * try to or force reclaim of transmitted buffers
  360. */
  361. static int bcm6368_enetsw_tx_reclaim(struct net_device *ndev, int force,
  362. int budget)
  363. {
  364. struct bcm6368_enetsw *priv = netdev_priv(ndev);
  365. struct platform_device *pdev = priv->pdev;
  366. struct device *dev = &pdev->dev;
  367. unsigned int bytes = 0;
  368. int released = 0;
  369. while (priv->tx_desc_count < priv->tx_ring_size) {
  370. struct bcm6368_enetsw_desc *desc;
  371. struct sk_buff *skb;
  372. /* We run in a bh and fight against start_xmit, which
  373. * is called with bh disabled */
  374. spin_lock(&priv->tx_lock);
  375. desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
  376. if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
  377. spin_unlock(&priv->tx_lock);
  378. break;
  379. }
  380. /* ensure other field of the descriptor were not read
  381. * before we checked ownership */
  382. rmb();
  383. skb = priv->tx_skb[priv->tx_dirty_desc];
  384. priv->tx_skb[priv->tx_dirty_desc] = NULL;
  385. dma_unmap_single(dev, desc->address, skb->len,
  386. DMA_TO_DEVICE);
  387. priv->tx_dirty_desc++;
  388. if (priv->tx_dirty_desc == priv->tx_ring_size)
  389. priv->tx_dirty_desc = 0;
  390. priv->tx_desc_count++;
  391. spin_unlock(&priv->tx_lock);
  392. if (desc->len_stat & DMADESC_UNDER_MASK)
  393. ndev->stats.tx_errors++;
  394. bytes += skb->len;
  395. napi_consume_skb(skb, budget);
  396. released++;
  397. }
  398. netdev_completed_queue(ndev, released, bytes);
  399. if (netif_queue_stopped(ndev) && released)
  400. netif_wake_queue(ndev);
  401. return released;
  402. }
  403. /*
  404. * poll func, called by network core
  405. */
  406. static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
  407. {
  408. struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
  409. struct net_device *ndev = priv->net_dev;
  410. int rx_work_done;
  411. /* ack interrupts */
  412. dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
  413. DMAC_IR_REG, priv->rx_chan);
  414. dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
  415. DMAC_IR_REG, priv->tx_chan);
  416. /* reclaim sent skb */
  417. bcm6368_enetsw_tx_reclaim(ndev, 0, budget);
  418. spin_lock(&priv->rx_lock);
  419. rx_work_done = bcm6368_enetsw_receive_queue(ndev, budget);
  420. spin_unlock(&priv->rx_lock);
  421. if (rx_work_done >= budget) {
  422. /* rx queue is not yet empty/clean */
  423. return rx_work_done;
  424. }
  425. /* no more packet in rx/tx queue, remove device from poll
  426. * queue */
  427. napi_complete_done(napi, rx_work_done);
  428. /* restore rx/tx interrupt */
  429. dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
  430. DMAC_IRMASK_REG, priv->rx_chan);
  431. dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
  432. DMAC_IRMASK_REG, priv->tx_chan);
  433. return rx_work_done;
  434. }
  435. /*
  436. * rx/tx dma interrupt handler
  437. */
  438. static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
  439. {
  440. struct net_device *ndev = dev_id;
  441. struct bcm6368_enetsw *priv = netdev_priv(ndev);
  442. /* mask rx/tx interrupts */
  443. dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
  444. dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
  445. napi_schedule(&priv->napi);
  446. return IRQ_HANDLED;
  447. }
  448. /*
  449. * tx request callback
  450. */
  451. static netdev_tx_t
  452. bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  453. {
  454. struct bcm6368_enetsw *priv = netdev_priv(ndev);
  455. struct platform_device *pdev = priv->pdev;
  456. struct device *dev = &pdev->dev;
  457. struct bcm6368_enetsw_desc *desc;
  458. u32 len_stat;
  459. netdev_tx_t ret;
  460. dma_addr_t p;
  461. /* lock against tx reclaim */
  462. spin_lock(&priv->tx_lock);
  463. /* make sure the tx hw queue is not full, should not happen
  464. * since we stop queue before it's the case */
  465. if (unlikely(!priv->tx_desc_count)) {
  466. netif_stop_queue(ndev);
  467. dev_err(dev, "xmit called with no tx desc available?\n");
  468. ret = NETDEV_TX_BUSY;
  469. goto out_unlock;
  470. }
  471. /* pad small packets */
  472. if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
  473. int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
  474. char *data;
  475. if (unlikely(skb_tailroom(skb) < needed)) {
  476. struct sk_buff *nskb;
  477. nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
  478. if (!nskb) {
  479. ret = NETDEV_TX_BUSY;
  480. goto out_unlock;
  481. }
  482. dev_kfree_skb(skb);
  483. skb = nskb;
  484. }
  485. data = skb_put_zero(skb, needed);
  486. }
  487. /* fill descriptor */
  488. p = dma_map_single(dev, skb->data, skb->len, DMA_TO_DEVICE);
  489. if (unlikely(dma_mapping_error(dev, p))) {
  490. dev_kfree_skb(skb);
  491. ret = NETDEV_TX_OK;
  492. goto out_unlock;
  493. }
  494. /* point to the next available desc */
  495. desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
  496. priv->tx_skb[priv->tx_curr_desc] = skb;
  497. desc->address = p;
  498. len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
  499. len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
  500. DMADESC_OWNER_MASK;
  501. priv->tx_curr_desc++;
  502. if (priv->tx_curr_desc == priv->tx_ring_size) {
  503. priv->tx_curr_desc = 0;
  504. len_stat |= DMADESC_WRAP_MASK;
  505. }
  506. priv->tx_desc_count--;
  507. /* dma might be already polling, make sure we update desc
  508. * fields in correct order */
  509. wmb();
  510. desc->len_stat = len_stat;
  511. wmb();
  512. netdev_sent_queue(ndev, skb->len);
  513. /* kick tx dma */
  514. dmac_writel(priv, DMAC_CHANCFG_EN_MASK, DMAC_CHANCFG_REG,
  515. priv->tx_chan);
  516. /* stop queue if no more desc available */
  517. if (!priv->tx_desc_count)
  518. netif_stop_queue(ndev);
  519. ndev->stats.tx_bytes += skb->len;
  520. ndev->stats.tx_packets++;
  521. ret = NETDEV_TX_OK;
  522. out_unlock:
  523. spin_unlock(&priv->tx_lock);
  524. return ret;
  525. }
  526. /*
  527. * disable dma in given channel
  528. */
  529. static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
  530. {
  531. int limit = 1000;
  532. dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
  533. do {
  534. u32 val;
  535. val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
  536. if (!(val & DMAC_CHANCFG_EN_MASK))
  537. break;
  538. udelay(1);
  539. } while (limit--);
  540. }
  541. static int bcm6368_enetsw_open(struct net_device *ndev)
  542. {
  543. struct bcm6368_enetsw *priv = netdev_priv(ndev);
  544. struct platform_device *pdev = priv->pdev;
  545. struct device *dev = &pdev->dev;
  546. int i, ret;
  547. unsigned int size;
  548. void *p;
  549. u32 val;
  550. /* mask all interrupts and request them */
  551. dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
  552. dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
  553. ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
  554. 0, ndev->name, ndev);
  555. if (ret)
  556. goto out_freeirq;
  557. if (priv->irq_tx != -1) {
  558. ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
  559. 0, ndev->name, ndev);
  560. if (ret)
  561. goto out_freeirq_rx;
  562. }
  563. /* allocate rx dma ring */
  564. size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
  565. p = dma_alloc_coherent(dev, size, &priv->rx_desc_dma, GFP_KERNEL);
  566. if (!p) {
  567. dev_err(dev, "cannot allocate rx ring %u\n", size);
  568. ret = -ENOMEM;
  569. goto out_freeirq_tx;
  570. }
  571. memset(p, 0, size);
  572. priv->rx_desc_alloc_size = size;
  573. priv->rx_desc_cpu = p;
  574. /* allocate tx dma ring */
  575. size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
  576. p = dma_alloc_coherent(dev, size, &priv->tx_desc_dma, GFP_KERNEL);
  577. if (!p) {
  578. dev_err(dev, "cannot allocate tx ring\n");
  579. ret = -ENOMEM;
  580. goto out_free_rx_ring;
  581. }
  582. memset(p, 0, size);
  583. priv->tx_desc_alloc_size = size;
  584. priv->tx_desc_cpu = p;
  585. priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
  586. GFP_KERNEL);
  587. if (!priv->tx_skb) {
  588. dev_err(dev, "cannot allocate tx skb queue\n");
  589. ret = -ENOMEM;
  590. goto out_free_tx_ring;
  591. }
  592. priv->tx_desc_count = priv->tx_ring_size;
  593. priv->tx_dirty_desc = 0;
  594. priv->tx_curr_desc = 0;
  595. spin_lock_init(&priv->tx_lock);
  596. /* init & fill rx ring with buffers */
  597. priv->rx_buf = kzalloc(sizeof(unsigned char *) * priv->rx_ring_size,
  598. GFP_KERNEL);
  599. if (!priv->rx_buf) {
  600. dev_err(dev, "cannot allocate rx buffer queue\n");
  601. ret = -ENOMEM;
  602. goto out_free_tx_skb;
  603. }
  604. priv->rx_desc_count = 0;
  605. priv->rx_dirty_desc = 0;
  606. priv->rx_curr_desc = 0;
  607. /* initialize flow control buffer allocation */
  608. dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
  609. DMA_BUFALLOC_REG(priv->rx_chan));
  610. if (bcm6368_enetsw_refill_rx(ndev, false)) {
  611. dev_err(dev, "cannot allocate rx buffer queue\n");
  612. ret = -ENOMEM;
  613. goto out;
  614. }
  615. /* write rx & tx ring addresses */
  616. dmas_writel(priv, priv->rx_desc_dma,
  617. DMAS_RSTART_REG, priv->rx_chan);
  618. dmas_writel(priv, priv->tx_desc_dma,
  619. DMAS_RSTART_REG, priv->tx_chan);
  620. /* clear remaining state ram for rx & tx channel */
  621. dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
  622. dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
  623. dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
  624. dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
  625. dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
  626. dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
  627. /* set dma maximum burst len */
  628. dmac_writel(priv, ENETSW_DMA_MAXBURST,
  629. DMAC_MAXBURST_REG, priv->rx_chan);
  630. dmac_writel(priv, ENETSW_DMA_MAXBURST,
  631. DMAC_MAXBURST_REG, priv->tx_chan);
  632. /* set flow control low/high threshold to 1/3 / 2/3 */
  633. val = priv->rx_ring_size / 3;
  634. dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
  635. val = (priv->rx_ring_size * 2) / 3;
  636. dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
  637. /* all set, enable mac and interrupts, start dma engine and
  638. * kick rx dma channel
  639. */
  640. wmb();
  641. dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
  642. dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
  643. DMAC_CHANCFG_REG, priv->rx_chan);
  644. /* watch "packet transferred" interrupt in rx and tx */
  645. dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
  646. DMAC_IR_REG, priv->rx_chan);
  647. dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
  648. DMAC_IR_REG, priv->tx_chan);
  649. /* make sure we enable napi before rx interrupt */
  650. napi_enable(&priv->napi);
  651. dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
  652. DMAC_IRMASK_REG, priv->rx_chan);
  653. dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
  654. DMAC_IRMASK_REG, priv->tx_chan);
  655. netif_carrier_on(ndev);
  656. netif_start_queue(ndev);
  657. return 0;
  658. out:
  659. for (i = 0; i < priv->rx_ring_size; i++) {
  660. struct bcm6368_enetsw_desc *desc;
  661. if (!priv->rx_buf[i])
  662. continue;
  663. desc = &priv->rx_desc_cpu[i];
  664. dma_unmap_single(dev, desc->address, priv->rx_buf_size,
  665. DMA_FROM_DEVICE);
  666. skb_free_frag(priv->rx_buf[i]);
  667. }
  668. kfree(priv->rx_buf);
  669. out_free_tx_skb:
  670. kfree(priv->tx_skb);
  671. out_free_tx_ring:
  672. dma_free_coherent(dev, priv->tx_desc_alloc_size,
  673. priv->tx_desc_cpu, priv->tx_desc_dma);
  674. out_free_rx_ring:
  675. dma_free_coherent(dev, priv->rx_desc_alloc_size,
  676. priv->rx_desc_cpu, priv->rx_desc_dma);
  677. out_freeirq_tx:
  678. if (priv->irq_tx != -1)
  679. free_irq(priv->irq_tx, ndev);
  680. out_freeirq_rx:
  681. free_irq(priv->irq_rx, ndev);
  682. out_freeirq:
  683. return ret;
  684. }
  685. static int bcm6368_enetsw_stop(struct net_device *ndev)
  686. {
  687. struct bcm6368_enetsw *priv = netdev_priv(ndev);
  688. struct platform_device *pdev = priv->pdev;
  689. struct device *dev = &pdev->dev;
  690. int i;
  691. netif_stop_queue(ndev);
  692. napi_disable(&priv->napi);
  693. del_timer_sync(&priv->rx_timeout);
  694. /* mask all interrupts */
  695. dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
  696. dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
  697. /* disable dma & mac */
  698. bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
  699. bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
  700. /* force reclaim of all tx buffers */
  701. bcm6368_enetsw_tx_reclaim(ndev, 1, 0);
  702. /* free the rx buffer ring */
  703. for (i = 0; i < priv->rx_ring_size; i++) {
  704. struct bcm6368_enetsw_desc *desc;
  705. if (!priv->rx_buf[i])
  706. continue;
  707. desc = &priv->rx_desc_cpu[i];
  708. dma_unmap_single_attrs(dev, desc->address, priv->rx_buf_size,
  709. DMA_FROM_DEVICE,
  710. DMA_ATTR_SKIP_CPU_SYNC);
  711. skb_free_frag(priv->rx_buf[i]);
  712. }
  713. /* free remaining allocated memory */
  714. kfree(priv->rx_buf);
  715. kfree(priv->tx_skb);
  716. dma_free_coherent(dev, priv->rx_desc_alloc_size,
  717. priv->rx_desc_cpu, priv->rx_desc_dma);
  718. dma_free_coherent(dev, priv->tx_desc_alloc_size,
  719. priv->tx_desc_cpu, priv->tx_desc_dma);
  720. if (priv->irq_tx != -1)
  721. free_irq(priv->irq_tx, ndev);
  722. free_irq(priv->irq_rx, ndev);
  723. netdev_reset_queue(ndev);
  724. return 0;
  725. }
  726. static const struct net_device_ops bcm6368_enetsw_ops = {
  727. .ndo_open = bcm6368_enetsw_open,
  728. .ndo_stop = bcm6368_enetsw_stop,
  729. .ndo_start_xmit = bcm6368_enetsw_start_xmit,
  730. };
  731. static int bcm6368_enetsw_probe(struct platform_device *pdev)
  732. {
  733. struct device *dev = &pdev->dev;
  734. struct device_node *node = dev->of_node;
  735. struct bcm6368_enetsw *priv;
  736. struct net_device *ndev;
  737. struct resource *res;
  738. unsigned char dev_addr[ETH_ALEN];
  739. unsigned i;
  740. int num_resets;
  741. int ret;
  742. ndev = devm_alloc_etherdev(dev, sizeof(*priv));
  743. if (!ndev)
  744. return -ENOMEM;
  745. platform_set_drvdata(pdev, ndev);
  746. SET_NETDEV_DEV(ndev, dev);
  747. priv = netdev_priv(ndev);
  748. priv->pdev = pdev;
  749. priv->net_dev = ndev;
  750. priv->num_pms = of_count_phandle_with_args(node, "power-domains",
  751. "#power-domain-cells");
  752. if (priv->num_pms > 1) {
  753. priv->pm = devm_kcalloc(dev, priv->num_pms,
  754. sizeof(struct device *), GFP_KERNEL);
  755. if (!priv->pm)
  756. return -ENOMEM;
  757. priv->link_pm = devm_kcalloc(dev, priv->num_pms,
  758. sizeof(struct device_link *),
  759. GFP_KERNEL);
  760. if (!priv->link_pm)
  761. return -ENOMEM;
  762. for (i = 0; i < priv->num_pms; i++) {
  763. priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
  764. if (IS_ERR(priv->pm[i])) {
  765. dev_err(dev, "error getting pm %d\n", i);
  766. return -EINVAL;
  767. }
  768. priv->link_pm[i] = device_link_add(dev, priv->pm[i],
  769. DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
  770. DL_FLAG_RPM_ACTIVE);
  771. }
  772. }
  773. pm_runtime_enable(dev);
  774. pm_runtime_no_callbacks(dev);
  775. ret = pm_runtime_get_sync(dev);
  776. if (ret < 0) {
  777. pm_runtime_disable(dev);
  778. dev_info(dev, "PM prober defer: ret=%d\n", ret);
  779. return -EPROBE_DEFER;
  780. }
  781. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
  782. priv->dma_base = devm_ioremap_resource(dev, res);
  783. if (IS_ERR_OR_NULL(priv->dma_base))
  784. return PTR_ERR(priv->dma_base);
  785. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  786. "dma-channels");
  787. priv->dma_chan = devm_ioremap_resource(dev, res);
  788. if (IS_ERR_OR_NULL(priv->dma_chan))
  789. return PTR_ERR(priv->dma_chan);
  790. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
  791. priv->dma_sram = devm_ioremap_resource(dev, res);
  792. if (IS_ERR_OR_NULL(priv->dma_sram))
  793. return PTR_ERR(priv->dma_sram);
  794. priv->irq_rx = platform_get_irq_byname(pdev, "rx");
  795. if (!priv->irq_rx)
  796. return -ENODEV;
  797. priv->irq_tx = platform_get_irq_byname(pdev, "tx");
  798. if (!priv->irq_tx)
  799. return -ENODEV;
  800. else if (priv->irq_tx < 0)
  801. priv->irq_tx = -1;
  802. if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
  803. return -ENODEV;
  804. if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
  805. return -ENODEV;
  806. priv->rx_ring_size = ENETSW_DEF_RX_DESC;
  807. priv->tx_ring_size = ENETSW_DEF_TX_DESC;
  808. priv->copybreak = ENETSW_DEF_CPY_BREAK;
  809. of_get_mac_address(node, dev_addr);
  810. if (is_valid_ether_addr(dev_addr)) {
  811. dev_addr_set(ndev, dev_addr);
  812. dev_info(dev, "mtd mac %pM\n", dev_addr);
  813. } else {
  814. eth_hw_addr_random(ndev);
  815. dev_info(dev, "random mac\n");
  816. }
  817. priv->rx_buf_size = ALIGN(ENETSW_MAX_FRAME,
  818. ENETSW_DMA_MAXBURST * 4);
  819. priv->rx_frag_size = ENETSW_FRAG_SIZE(priv->rx_buf_size);
  820. priv->num_clocks = of_clk_get_parent_count(node);
  821. if (priv->num_clocks) {
  822. priv->clock = devm_kcalloc(dev, priv->num_clocks,
  823. sizeof(struct clk *), GFP_KERNEL);
  824. if (IS_ERR_OR_NULL(priv->clock))
  825. return PTR_ERR(priv->clock);
  826. }
  827. for (i = 0; i < priv->num_clocks; i++) {
  828. priv->clock[i] = of_clk_get(node, i);
  829. if (IS_ERR(priv->clock[i])) {
  830. dev_err(dev, "error getting clock %d\n", i);
  831. return PTR_ERR(priv->clock[i]);
  832. }
  833. ret = clk_prepare_enable(priv->clock[i]);
  834. if (ret) {
  835. dev_err(dev, "error enabling clock %d\n", i);
  836. return ret;
  837. }
  838. }
  839. num_resets = of_count_phandle_with_args(node, "resets",
  840. "#reset-cells");
  841. if (num_resets > 0)
  842. priv->num_resets = num_resets;
  843. else
  844. priv->num_resets = 0;
  845. if (priv->num_resets) {
  846. priv->reset = devm_kcalloc(dev, priv->num_resets,
  847. sizeof(struct reset_control *),
  848. GFP_KERNEL);
  849. if (IS_ERR_OR_NULL(priv->reset))
  850. return PTR_ERR(priv->reset);
  851. }
  852. for (i = 0; i < priv->num_resets; i++) {
  853. priv->reset[i] = devm_reset_control_get_by_index(dev, i);
  854. if (IS_ERR(priv->reset[i])) {
  855. dev_err(dev, "error getting reset %d\n", i);
  856. return PTR_ERR(priv->reset[i]);
  857. }
  858. ret = reset_control_reset(priv->reset[i]);
  859. if (ret) {
  860. dev_err(dev, "error performing reset %d\n", i);
  861. return ret;
  862. }
  863. }
  864. spin_lock_init(&priv->rx_lock);
  865. timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
  866. /* register netdevice */
  867. ndev->netdev_ops = &bcm6368_enetsw_ops;
  868. ndev->min_mtu = ETH_ZLEN;
  869. ndev->mtu = ETH_DATA_LEN;
  870. ndev->max_mtu = ENETSW_MAX_MTU;
  871. #if LINUX_VERSION_CODE >= KERNEL_VERSION(6,1,0)
  872. netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll);
  873. #else
  874. netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
  875. #endif
  876. ret = devm_register_netdev(dev, ndev);
  877. if (ret) {
  878. netif_napi_del(&priv->napi);
  879. goto out_disable_clk;
  880. }
  881. netif_carrier_off(ndev);
  882. dev_info(dev, "%s at 0x%px, IRQ %d\n", ndev->name, priv->dma_base, ndev->irq);
  883. return 0;
  884. out_disable_clk:
  885. for (i = 0; i < priv->num_resets; i++)
  886. reset_control_assert(priv->reset[i]);
  887. for (i = 0; i < priv->num_clocks; i++)
  888. clk_disable_unprepare(priv->clock[i]);
  889. return ret;
  890. }
  891. static int bcm6368_enetsw_remove(struct platform_device *pdev)
  892. {
  893. struct device *dev = &pdev->dev;
  894. struct net_device *ndev = platform_get_drvdata(pdev);
  895. struct bcm6368_enetsw *priv = netdev_priv(ndev);
  896. unsigned int i;
  897. pm_runtime_put_sync(dev);
  898. for (i = 0; priv->pm && i < priv->num_pms; i++) {
  899. dev_pm_domain_detach(priv->pm[i], true);
  900. device_link_del(priv->link_pm[i]);
  901. }
  902. for (i = 0; i < priv->num_resets; i++)
  903. reset_control_assert(priv->reset[i]);
  904. for (i = 0; i < priv->num_clocks; i++)
  905. clk_disable_unprepare(priv->clock[i]);
  906. return 0;
  907. }
  908. static const struct of_device_id bcm6368_enetsw_of_match[] = {
  909. { .compatible = "brcm,bcm6318-enetsw", },
  910. { .compatible = "brcm,bcm6328-enetsw", },
  911. { .compatible = "brcm,bcm6362-enetsw", },
  912. { .compatible = "brcm,bcm6368-enetsw", },
  913. { .compatible = "brcm,bcm63268-enetsw", },
  914. { /* sentinel */ }
  915. };
  916. MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
  917. static struct platform_driver bcm6368_enetsw_driver = {
  918. .driver = {
  919. .name = "bcm6368-enetsw",
  920. .of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
  921. },
  922. .probe = bcm6368_enetsw_probe,
  923. .remove = bcm6368_enetsw_remove,
  924. };
  925. module_platform_driver(bcm6368_enetsw_driver);
  926. MODULE_AUTHOR("Álvaro Fernández Rojas <[email protected]>");
  927. MODULE_DESCRIPTION("BCM6368 Ethernet Switch Controller Driver");
  928. MODULE_LICENSE("GPL v2");
  929. MODULE_ALIAS("platform:bcm6368-enetsw");