rtl838x.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. #include <asm/mach-rtl838x/mach-rtl83xx.h>
  3. #include <linux/iopoll.h>
  4. #include <net/nexthop.h>
  5. #include "rtl83xx.h"
  6. #define RTL838X_VLAN_PORT_TAG_STS_UNTAG 0x0
  7. #define RTL838X_VLAN_PORT_TAG_STS_TAGGED 0x1
  8. #define RTL838X_VLAN_PORT_TAG_STS_PRIORITY_TAGGED 0x2
  9. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_BASE 0xA530
  10. /* port 0-28 */
  11. #define RTL838X_VLAN_PORT_TAG_STS_CTRL(port) \
  12. RTL838X_VLAN_PORT_TAG_STS_CTRL_BASE + (port << 2)
  13. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_EGR_P_OTAG_KEEP_MASK GENMASK(11,10)
  14. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_EGR_P_ITAG_KEEP_MASK GENMASK(9,8)
  15. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_IGR_P_OTAG_KEEP_MASK GENMASK(7,6)
  16. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_IGR_P_ITAG_KEEP_MASK GENMASK(5,4)
  17. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK GENMASK(3,2)
  18. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK GENMASK(1,0)
  19. extern struct mutex smi_lock;
  20. // see_dal_maple_acl_log2PhyTmplteField and src/app/diag_v2/src/diag_acl.c
  21. /* Definition of the RTL838X-specific template field IDs as used in the PIE */
  22. enum template_field_id {
  23. TEMPLATE_FIELD_SPMMASK = 0,
  24. TEMPLATE_FIELD_SPM0 = 1, // Source portmask ports 0-15
  25. TEMPLATE_FIELD_SPM1 = 2, // Source portmask ports 16-28
  26. TEMPLATE_FIELD_RANGE_CHK = 3,
  27. TEMPLATE_FIELD_DMAC0 = 4, // Destination MAC [15:0]
  28. TEMPLATE_FIELD_DMAC1 = 5, // Destination MAC [31:16]
  29. TEMPLATE_FIELD_DMAC2 = 6, // Destination MAC [47:32]
  30. TEMPLATE_FIELD_SMAC0 = 7, // Source MAC [15:0]
  31. TEMPLATE_FIELD_SMAC1 = 8, // Source MAC [31:16]
  32. TEMPLATE_FIELD_SMAC2 = 9, // Source MAC [47:32]
  33. TEMPLATE_FIELD_ETHERTYPE = 10, // Ethernet typ
  34. TEMPLATE_FIELD_OTAG = 11, // Outer VLAN tag
  35. TEMPLATE_FIELD_ITAG = 12, // Inner VLAN tag
  36. TEMPLATE_FIELD_SIP0 = 13, // IPv4 or IPv6 source IP[15:0] or ARP/RARP
  37. // source protocol address in header
  38. TEMPLATE_FIELD_SIP1 = 14, // IPv4 or IPv6 source IP[31:16] or ARP/RARP
  39. TEMPLATE_FIELD_DIP0 = 15, // IPv4 or IPv6 destination IP[15:0]
  40. TEMPLATE_FIELD_DIP1 = 16, // IPv4 or IPv6 destination IP[31:16]
  41. TEMPLATE_FIELD_IP_TOS_PROTO = 17, // IPv4 TOS/IPv6 traffic class and
  42. // IPv4 proto/IPv6 next header fields
  43. TEMPLATE_FIELD_L34_HEADER = 18, // packet with extra tag and IPv6 with auth, dest,
  44. // frag, route, hop-by-hop option header,
  45. // IGMP type, TCP flag
  46. TEMPLATE_FIELD_L4_SPORT = 19, // TCP/UDP source port
  47. TEMPLATE_FIELD_L4_DPORT = 20, // TCP/UDP destination port
  48. TEMPLATE_FIELD_ICMP_IGMP = 21,
  49. TEMPLATE_FIELD_IP_RANGE = 22,
  50. TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 23, // Field selector mask
  51. TEMPLATE_FIELD_FIELD_SELECTOR_0 = 24,
  52. TEMPLATE_FIELD_FIELD_SELECTOR_1 = 25,
  53. TEMPLATE_FIELD_FIELD_SELECTOR_2 = 26,
  54. TEMPLATE_FIELD_FIELD_SELECTOR_3 = 27,
  55. TEMPLATE_FIELD_SIP2 = 28, // IPv6 source IP[47:32]
  56. TEMPLATE_FIELD_SIP3 = 29, // IPv6 source IP[63:48]
  57. TEMPLATE_FIELD_SIP4 = 30, // IPv6 source IP[79:64]
  58. TEMPLATE_FIELD_SIP5 = 31, // IPv6 source IP[95:80]
  59. TEMPLATE_FIELD_SIP6 = 32, // IPv6 source IP[111:96]
  60. TEMPLATE_FIELD_SIP7 = 33, // IPv6 source IP[127:112]
  61. TEMPLATE_FIELD_DIP2 = 34, // IPv6 destination IP[47:32]
  62. TEMPLATE_FIELD_DIP3 = 35, // IPv6 destination IP[63:48]
  63. TEMPLATE_FIELD_DIP4 = 36, // IPv6 destination IP[79:64]
  64. TEMPLATE_FIELD_DIP5 = 37, // IPv6 destination IP[95:80]
  65. TEMPLATE_FIELD_DIP6 = 38, // IPv6 destination IP[111:96]
  66. TEMPLATE_FIELD_DIP7 = 39, // IPv6 destination IP[127:112]
  67. TEMPLATE_FIELD_FWD_VID = 40, // Forwarding VLAN-ID
  68. TEMPLATE_FIELD_FLOW_LABEL = 41,
  69. };
  70. /* The RTL838X SoCs use 5 fixed templates with definitions for which data fields are to
  71. * be copied from the Ethernet Frame header into the 12 User-definable fields of the Packet
  72. * Inspection Engine's buffer. The following defines the field contents for each of the fixed
  73. * templates. Additionally, 3 user-definable templates can be set up via the definitions
  74. * in RTL838X_ACL_TMPLTE_CTRL control registers.
  75. * TODO: See all src/app/diag_v2/src/diag_pie.c
  76. */
  77. #define N_FIXED_TEMPLATES 5
  78. static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] =
  79. {
  80. {
  81. TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_OTAG,
  82. TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2,
  83. TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
  84. TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_RANGE_CHK
  85. }, {
  86. TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
  87. TEMPLATE_FIELD_DIP1,TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_L4_SPORT,
  88. TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_ITAG,
  89. TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
  90. }, {
  91. TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
  92. TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO,
  93. TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_SIP0,
  94. TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1
  95. }, {
  96. TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2,
  97. TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5,
  98. TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_L4_DPORT,
  99. TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_IP_TOS_PROTO
  100. }, {
  101. TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2,
  102. TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5,
  103. TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_ITAG,
  104. TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
  105. },
  106. };
  107. void rtl838x_print_matrix(void)
  108. {
  109. unsigned volatile int *ptr8;
  110. int i;
  111. ptr8 = RTL838X_SW_BASE + RTL838X_PORT_ISO_CTRL(0);
  112. for (i = 0; i < 28; i += 8)
  113. pr_debug("> %8x %8x %8x %8x %8x %8x %8x %8x\n",
  114. ptr8[i + 0], ptr8[i + 1], ptr8[i + 2], ptr8[i + 3],
  115. ptr8[i + 4], ptr8[i + 5], ptr8[i + 6], ptr8[i + 7]);
  116. pr_debug("CPU_PORT> %8x\n", ptr8[28]);
  117. }
  118. static inline int rtl838x_port_iso_ctrl(int p)
  119. {
  120. return RTL838X_PORT_ISO_CTRL(p);
  121. }
  122. static inline void rtl838x_exec_tbl0_cmd(u32 cmd)
  123. {
  124. sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_0);
  125. do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_0) & BIT(15));
  126. }
  127. static inline void rtl838x_exec_tbl1_cmd(u32 cmd)
  128. {
  129. sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_1);
  130. do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_1) & BIT(15));
  131. }
  132. static inline int rtl838x_tbl_access_data_0(int i)
  133. {
  134. return RTL838X_TBL_ACCESS_DATA_0(i);
  135. }
  136. static void rtl838x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
  137. {
  138. u32 v;
  139. // Read VLAN table (0) via register 0
  140. struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
  141. rtl_table_read(r, vlan);
  142. info->tagged_ports = sw_r32(rtl_table_data(r, 0));
  143. v = sw_r32(rtl_table_data(r, 1));
  144. pr_debug("VLAN_READ %d: %016llx %08x\n", vlan, info->tagged_ports, v);
  145. rtl_table_release(r);
  146. info->profile_id = v & 0x7;
  147. info->hash_mc_fid = !!(v & 0x8);
  148. info->hash_uc_fid = !!(v & 0x10);
  149. info->fid = (v >> 5) & 0x3f;
  150. // Read UNTAG table (0) via table register 1
  151. r = rtl_table_get(RTL8380_TBL_1, 0);
  152. rtl_table_read(r, vlan);
  153. info->untagged_ports = sw_r32(rtl_table_data(r, 0));
  154. rtl_table_release(r);
  155. }
  156. static void rtl838x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
  157. {
  158. u32 v;
  159. // Access VLAN table (0) via register 0
  160. struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
  161. sw_w32(info->tagged_ports, rtl_table_data(r, 0));
  162. v = info->profile_id;
  163. v |= info->hash_mc_fid ? 0x8 : 0;
  164. v |= info->hash_uc_fid ? 0x10 : 0;
  165. v |= ((u32)info->fid) << 5;
  166. sw_w32(v, rtl_table_data(r, 1));
  167. rtl_table_write(r, vlan);
  168. rtl_table_release(r);
  169. }
  170. static void rtl838x_vlan_set_untagged(u32 vlan, u64 portmask)
  171. {
  172. // Access UNTAG table (0) via register 1
  173. struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 0);
  174. sw_w32(portmask & 0x1fffffff, rtl_table_data(r, 0));
  175. rtl_table_write(r, vlan);
  176. rtl_table_release(r);
  177. }
  178. /* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer
  179. */
  180. static void rtl838x_vlan_fwd_on_inner(int port, bool is_set)
  181. {
  182. if (is_set)
  183. sw_w32_mask(BIT(port), 0, RTL838X_VLAN_PORT_FWD);
  184. else
  185. sw_w32_mask(0, BIT(port), RTL838X_VLAN_PORT_FWD);
  186. }
  187. static u64 rtl838x_l2_hash_seed(u64 mac, u32 vid)
  188. {
  189. return mac << 12 | vid;
  190. }
  191. /* Applies the same hash algorithm as the one used currently by the ASIC to the seed
  192. * and returns a key into the L2 hash table
  193. */
  194. static u32 rtl838x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
  195. {
  196. u32 h1, h2, h3, h;
  197. if (sw_r32(priv->r->l2_ctrl_0) & 1) {
  198. h1 = (seed >> 11) & 0x7ff;
  199. h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
  200. h2 = (seed >> 33) & 0x7ff;
  201. h2 = ((h2 & 0x3f) << 5) | ((h2 >> 6) & 0x1f);
  202. h3 = (seed >> 44) & 0x7ff;
  203. h3 = ((h3 & 0x7f) << 4) | ((h3 >> 7) & 0xf);
  204. h = h1 ^ h2 ^ h3 ^ ((seed >> 55) & 0x1ff);
  205. h ^= ((seed >> 22) & 0x7ff) ^ (seed & 0x7ff);
  206. } else {
  207. h = ((seed >> 55) & 0x1ff) ^ ((seed >> 44) & 0x7ff) ^
  208. ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff) ^
  209. ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff);
  210. }
  211. return h;
  212. }
  213. static inline int rtl838x_mac_force_mode_ctrl(int p)
  214. {
  215. return RTL838X_MAC_FORCE_MODE_CTRL + (p << 2);
  216. }
  217. static inline int rtl838x_mac_port_ctrl(int p)
  218. {
  219. return RTL838X_MAC_PORT_CTRL(p);
  220. }
  221. static inline int rtl838x_l2_port_new_salrn(int p)
  222. {
  223. return RTL838X_L2_PORT_NEW_SALRN(p);
  224. }
  225. static inline int rtl838x_l2_port_new_sa_fwd(int p)
  226. {
  227. return RTL838X_L2_PORT_NEW_SA_FWD(p);
  228. }
  229. static inline int rtl838x_mac_link_spd_sts(int p)
  230. {
  231. return RTL838X_MAC_LINK_SPD_STS(p);
  232. }
  233. inline static int rtl838x_trk_mbr_ctr(int group)
  234. {
  235. return RTL838X_TRK_MBR_CTR + (group << 2);
  236. }
  237. /* Fills an L2 entry structure from the SoC registers */
  238. static void rtl838x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
  239. {
  240. /* Table contains different entry types, we need to identify the right one:
  241. * Check for MC entries, first
  242. * In contrast to the RTL93xx SoCs, there is no valid bit, use heuristics to
  243. * identify valid entries
  244. */
  245. e->is_ip_mc = !!(r[0] & BIT(22));
  246. e->is_ipv6_mc = !!(r[0] & BIT(21));
  247. e->type = L2_INVALID;
  248. if (!e->is_ip_mc && !e->is_ipv6_mc) {
  249. e->mac[0] = (r[1] >> 20);
  250. e->mac[1] = (r[1] >> 12);
  251. e->mac[2] = (r[1] >> 4);
  252. e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
  253. e->mac[4] = (r[2] >> 20);
  254. e->mac[5] = (r[2] >> 12);
  255. e->rvid = r[2] & 0xfff;
  256. e->vid = r[0] & 0xfff;
  257. /* Is it a unicast entry? check multicast bit */
  258. if (!(e->mac[0] & 1)) {
  259. e->is_static = !!((r[0] >> 19) & 1);
  260. e->port = (r[0] >> 12) & 0x1f;
  261. e->block_da = !!(r[1] & BIT(30));
  262. e->block_sa = !!(r[1] & BIT(31));
  263. e->suspended = !!(r[1] & BIT(29));
  264. e->next_hop = !!(r[1] & BIT(28));
  265. if (e->next_hop) {
  266. pr_debug("Found next hop entry, need to read extra data\n");
  267. e->nh_vlan_target = !!(r[0] & BIT(9));
  268. e->nh_route_id = r[0] & 0x1ff;
  269. e->vid = e->rvid;
  270. }
  271. e->age = (r[0] >> 17) & 0x3;
  272. e->valid = true;
  273. /* A valid entry has one of mutli-cast, aging, sa/da-blocking,
  274. * next-hop or static entry bit set
  275. */
  276. if (!(r[0] & 0x007c0000) && !(r[1] & 0xd0000000))
  277. e->valid = false;
  278. else
  279. e->type = L2_UNICAST;
  280. } else { // L2 multicast
  281. pr_debug("Got L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
  282. e->valid = true;
  283. e->type = L2_MULTICAST;
  284. e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
  285. }
  286. } else { // IPv4 and IPv6 multicast
  287. e->valid = true;
  288. e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
  289. e->mc_gip = (r[1] << 20) | (r[2] >> 12);
  290. e->rvid = r[2] & 0xfff;
  291. }
  292. if (e->is_ip_mc)
  293. e->type = IP4_MULTICAST;
  294. if (e->is_ipv6_mc)
  295. e->type = IP6_MULTICAST;
  296. }
  297. /* Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry */
  298. static void rtl838x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
  299. {
  300. u64 mac = ether_addr_to_u64(e->mac);
  301. if (!e->valid) {
  302. r[0] = r[1] = r[2] = 0;
  303. return;
  304. }
  305. r[0] = e->is_ip_mc ? BIT(22) : 0;
  306. r[0] |= e->is_ipv6_mc ? BIT(21) : 0;
  307. if (!e->is_ip_mc && !e->is_ipv6_mc) {
  308. r[1] = mac >> 20;
  309. r[2] = (mac & 0xfffff) << 12;
  310. /* Is it a unicast entry? check multicast bit */
  311. if (!(e->mac[0] & 1)) {
  312. r[0] |= e->is_static ? BIT(19) : 0;
  313. r[0] |= (e->port & 0x3f) << 12;
  314. r[0] |= e->vid;
  315. r[1] |= e->block_da ? BIT(30) : 0;
  316. r[1] |= e->block_sa ? BIT(31) : 0;
  317. r[1] |= e->suspended ? BIT(29) : 0;
  318. r[2] |= e->rvid & 0xfff;
  319. if (e->next_hop) {
  320. r[1] |= BIT(28);
  321. r[0] |= e->nh_vlan_target ? BIT(9) : 0;
  322. r[0] |= e->nh_route_id & 0x1ff;
  323. }
  324. r[0] |= (e->age & 0x3) << 17;
  325. } else { // L2 Multicast
  326. r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
  327. r[2] |= e->rvid & 0xfff;
  328. r[0] |= e->vid & 0xfff;
  329. pr_debug("FILL MC: %08x %08x %08x\n", r[0], r[1], r[2]);
  330. }
  331. } else { // IPv4 and IPv6 multicast
  332. r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
  333. r[1] = e->mc_gip >> 20;
  334. r[2] = e->mc_gip << 12;
  335. r[2] |= e->rvid;
  336. }
  337. }
  338. /* Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
  339. * hash is the id of the bucket and pos is the position of the entry in that bucket
  340. * The data read from the SoC is filled into rtl838x_l2_entry
  341. */
  342. static u64 rtl838x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
  343. {
  344. u32 r[3];
  345. struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0); // Access L2 Table 0
  346. u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
  347. int i;
  348. rtl_table_read(q, idx);
  349. for (i = 0; i < 3; i++)
  350. r[i] = sw_r32(rtl_table_data(q, i));
  351. rtl_table_release(q);
  352. rtl838x_fill_l2_entry(r, e);
  353. if (!e->valid)
  354. return 0;
  355. return (((u64) r[1]) << 32) | (r[2]); // mac and vid concatenated as hash seed
  356. }
  357. static void rtl838x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
  358. {
  359. u32 r[3];
  360. struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0);
  361. int i;
  362. u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
  363. rtl838x_fill_l2_row(r, e);
  364. for (i = 0; i < 3; i++)
  365. sw_w32(r[i], rtl_table_data(q, i));
  366. rtl_table_write(q, idx);
  367. rtl_table_release(q);
  368. }
  369. static u64 rtl838x_read_cam(int idx, struct rtl838x_l2_entry *e)
  370. {
  371. u32 r[3];
  372. struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
  373. int i;
  374. rtl_table_read(q, idx);
  375. for (i = 0; i < 3; i++)
  376. r[i] = sw_r32(rtl_table_data(q, i));
  377. rtl_table_release(q);
  378. rtl838x_fill_l2_entry(r, e);
  379. if (!e->valid)
  380. return 0;
  381. pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
  382. // Return MAC with concatenated VID ac concatenated ID
  383. return (((u64) r[1]) << 32) | r[2];
  384. }
  385. static void rtl838x_write_cam(int idx, struct rtl838x_l2_entry *e)
  386. {
  387. u32 r[3];
  388. struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
  389. int i;
  390. rtl838x_fill_l2_row(r, e);
  391. for (i = 0; i < 3; i++)
  392. sw_w32(r[i], rtl_table_data(q, i));
  393. rtl_table_write(q, idx);
  394. rtl_table_release(q);
  395. }
  396. static u64 rtl838x_read_mcast_pmask(int idx)
  397. {
  398. u32 portmask;
  399. // Read MC_PMSK (2) via register RTL8380_TBL_L2
  400. struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
  401. rtl_table_read(q, idx);
  402. portmask = sw_r32(rtl_table_data(q, 0));
  403. rtl_table_release(q);
  404. return portmask;
  405. }
  406. static void rtl838x_write_mcast_pmask(int idx, u64 portmask)
  407. {
  408. // Access MC_PMSK (2) via register RTL8380_TBL_L2
  409. struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
  410. sw_w32(((u32)portmask) & 0x1fffffff, rtl_table_data(q, 0));
  411. rtl_table_write(q, idx);
  412. rtl_table_release(q);
  413. }
  414. static void rtl838x_vlan_profile_setup(int profile)
  415. {
  416. u32 pmask_id = UNKNOWN_MC_PMASK;
  417. // Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for unknown MC traffic flooding
  418. u32 p = 1 | pmask_id << 1 | pmask_id << 10 | pmask_id << 19;
  419. sw_w32(p, RTL838X_VLAN_PROFILE(profile));
  420. /* RTL8380 and RTL8390 use an index into the portmask table to set the
  421. * unknown multicast portmask, setup a default at a safe location
  422. * On RTL93XX, the portmask is directly set in the profile,
  423. * see e.g. rtl9300_vlan_profile_setup
  424. */
  425. rtl838x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x1fffffff);
  426. }
  427. static void rtl838x_l2_learning_setup(void)
  428. {
  429. /* Set portmask for broadcast traffic and unknown unicast address flooding
  430. * to the reserved entry in the portmask table used also for
  431. * multicast flooding */
  432. sw_w32(UNKNOWN_MC_PMASK << 12 | UNKNOWN_MC_PMASK, RTL838X_L2_FLD_PMSK);
  433. /* Enable learning constraint system-wide (bit 0), per-port (bit 1)
  434. * and per vlan (bit 2) */
  435. sw_w32(0x7, RTL838X_L2_LRN_CONSTRT_EN);
  436. // Limit learning to maximum: 16k entries, after that just flood (bits 0-1)
  437. sw_w32((0x3fff << 2) | 0, RTL838X_L2_LRN_CONSTRT);
  438. // Do not trap ARP packets to CPU_PORT
  439. sw_w32(0, RTL838X_SPCL_TRAP_ARP_CTRL);
  440. }
  441. static void rtl838x_enable_learning(int port, bool enable)
  442. {
  443. // Limit learning to maximum: 16k entries
  444. sw_w32_mask(0x3fff << 2, enable ? (0x3fff << 2) : 0,
  445. RTL838X_L2_PORT_LRN_CONSTRT + (port << 2));
  446. }
  447. static void rtl838x_enable_flood(int port, bool enable)
  448. {
  449. /* 0: Forward
  450. * 1: Disable
  451. * 2: to CPU
  452. * 3: Copy to CPU
  453. */
  454. sw_w32_mask(0x3, enable ? 0 : 1,
  455. RTL838X_L2_PORT_LRN_CONSTRT + (port << 2));
  456. }
  457. static void rtl838x_enable_mcast_flood(int port, bool enable)
  458. {
  459. }
  460. static void rtl838x_enable_bcast_flood(int port, bool enable)
  461. {
  462. }
  463. static void rtl838x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
  464. {
  465. int i;
  466. u32 cmd = 1 << 15 | /* Execute cmd */
  467. 1 << 14 | /* Read */
  468. 2 << 12 | /* Table type 0b10 */
  469. (msti & 0xfff);
  470. priv->r->exec_tbl0_cmd(cmd);
  471. for (i = 0; i < 2; i++)
  472. port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
  473. }
  474. static void rtl838x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
  475. {
  476. int i;
  477. u32 cmd = 1 << 15 | /* Execute cmd */
  478. 0 << 14 | /* Write */
  479. 2 << 12 | /* Table type 0b10 */
  480. (msti & 0xfff);
  481. for (i = 0; i < 2; i++)
  482. sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
  483. priv->r->exec_tbl0_cmd(cmd);
  484. }
  485. u64 rtl838x_traffic_get(int source)
  486. {
  487. return rtl838x_get_port_reg(rtl838x_port_iso_ctrl(source));
  488. }
  489. void rtl838x_traffic_set(int source, u64 dest_matrix)
  490. {
  491. rtl838x_set_port_reg(dest_matrix, rtl838x_port_iso_ctrl(source));
  492. }
  493. void rtl838x_traffic_enable(int source, int dest)
  494. {
  495. rtl838x_mask_port_reg(0, BIT(dest), rtl838x_port_iso_ctrl(source));
  496. }
  497. void rtl838x_traffic_disable(int source, int dest)
  498. {
  499. rtl838x_mask_port_reg(BIT(dest), 0, rtl838x_port_iso_ctrl(source));
  500. }
  501. /* Enables or disables the EEE/EEEP capability of a port */
  502. static void rtl838x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable)
  503. {
  504. u32 v;
  505. // This works only for Ethernet ports, and on the RTL838X, ports from 24 are SFP
  506. if (port >= 24)
  507. return;
  508. pr_debug("In %s: setting port %d to %d\n", __func__, port, enable);
  509. v = enable ? 0x3 : 0x0;
  510. // Set EEE state for 100 (bit 9) & 1000MBit (bit 10)
  511. sw_w32_mask(0x3 << 9, v << 9, priv->r->mac_force_mode_ctrl(port));
  512. // Set TX/RX EEE state
  513. if (enable) {
  514. sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_TX_EN);
  515. sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_RX_EN);
  516. } else {
  517. sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_TX_EN);
  518. sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_RX_EN);
  519. }
  520. priv->ports[port].eee_enabled = enable;
  521. }
  522. /* Get EEE own capabilities and negotiation result */
  523. static int rtl838x_eee_port_ability(struct rtl838x_switch_priv *priv,
  524. struct ethtool_eee *e, int port)
  525. {
  526. u64 link;
  527. if (port >= 24)
  528. return 0;
  529. link = rtl839x_get_port_reg_le(RTL838X_MAC_LINK_STS);
  530. if (!(link & BIT(port)))
  531. return 0;
  532. if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(9))
  533. e->advertised |= ADVERTISED_100baseT_Full;
  534. if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(10))
  535. e->advertised |= ADVERTISED_1000baseT_Full;
  536. if (sw_r32(RTL838X_MAC_EEE_ABLTY) & BIT(port)) {
  537. e->lp_advertised = ADVERTISED_100baseT_Full;
  538. e->lp_advertised |= ADVERTISED_1000baseT_Full;
  539. return 1;
  540. }
  541. return 0;
  542. }
  543. static void rtl838x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
  544. {
  545. int i;
  546. pr_info("Setting up EEE, state: %d\n", enable);
  547. sw_w32_mask(0x4, 0, RTL838X_SMI_GLB_CTRL);
  548. /* Set timers for EEE */
  549. sw_w32(0x5001411, RTL838X_EEE_TX_TIMER_GIGA_CTRL);
  550. sw_w32(0x5001417, RTL838X_EEE_TX_TIMER_GELITE_CTRL);
  551. // Enable EEE MAC support on ports
  552. for (i = 0; i < priv->cpu_port; i++) {
  553. if (priv->ports[i].phy)
  554. rtl838x_port_eee_set(priv, i, enable);
  555. }
  556. priv->eee_enabled = enable;
  557. }
  558. static void rtl838x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
  559. {
  560. int block = index / PIE_BLOCK_SIZE;
  561. u32 block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);
  562. // Make sure rule-lookup is enabled in the block
  563. if (!(block_state & BIT(block)))
  564. sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
  565. }
  566. static void rtl838x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to)
  567. {
  568. int block_from = index_from / PIE_BLOCK_SIZE;
  569. int block_to = index_to / PIE_BLOCK_SIZE;
  570. u32 v = (index_from << 1)| (index_to << 12 ) | BIT(0);
  571. int block;
  572. u32 block_state;
  573. pr_debug("%s: from %d to %d\n", __func__, index_from, index_to);
  574. mutex_lock(&priv->reg_mutex);
  575. // Remember currently active blocks
  576. block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);
  577. // Make sure rule-lookup is disabled in the relevant blocks
  578. for (block = block_from; block <= block_to; block++) {
  579. if (block_state & BIT(block))
  580. sw_w32(block_state & (~BIT(block)), RTL838X_ACL_BLK_LOOKUP_CTRL);
  581. }
  582. // Write from-to and execute bit into control register
  583. sw_w32(v, RTL838X_ACL_CLR_CTRL);
  584. // Wait until command has completed
  585. do {
  586. } while (sw_r32(RTL838X_ACL_CLR_CTRL) & BIT(0));
  587. // Re-enable rule lookup
  588. for (block = block_from; block <= block_to; block++) {
  589. if (!(block_state & BIT(block)))
  590. sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
  591. }
  592. mutex_unlock(&priv->reg_mutex);
  593. }
  594. /* Reads the intermediate representation of the templated match-fields of the
  595. * PIE rule in the pie_rule structure and fills in the raw data fields in the
  596. * raw register space r[].
  597. * The register space configuration size is identical for the RTL8380/90 and RTL9300,
  598. * however the RTL9310 has 2 more registers / fields and the physical field-ids
  599. * are specific to every platform.
  600. */
  601. static void rtl838x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
  602. {
  603. int i;
  604. enum template_field_id field_type;
  605. u16 data, data_m;
  606. for (i = 0; i < N_FIXED_FIELDS; i++) {
  607. field_type = t[i];
  608. data = data_m = 0;
  609. switch (field_type) {
  610. case TEMPLATE_FIELD_SPM0:
  611. data = pr->spm;
  612. data_m = pr->spm_m;
  613. break;
  614. case TEMPLATE_FIELD_SPM1:
  615. data = pr->spm >> 16;
  616. data_m = pr->spm_m >> 16;
  617. break;
  618. case TEMPLATE_FIELD_OTAG:
  619. data = pr->otag;
  620. data_m = pr->otag_m;
  621. break;
  622. case TEMPLATE_FIELD_SMAC0:
  623. data = pr->smac[4];
  624. data = (data << 8) | pr->smac[5];
  625. data_m = pr->smac_m[4];
  626. data_m = (data_m << 8) | pr->smac_m[5];
  627. break;
  628. case TEMPLATE_FIELD_SMAC1:
  629. data = pr->smac[2];
  630. data = (data << 8) | pr->smac[3];
  631. data_m = pr->smac_m[2];
  632. data_m = (data_m << 8) | pr->smac_m[3];
  633. break;
  634. case TEMPLATE_FIELD_SMAC2:
  635. data = pr->smac[0];
  636. data = (data << 8) | pr->smac[1];
  637. data_m = pr->smac_m[0];
  638. data_m = (data_m << 8) | pr->smac_m[1];
  639. break;
  640. case TEMPLATE_FIELD_DMAC0:
  641. data = pr->dmac[4];
  642. data = (data << 8) | pr->dmac[5];
  643. data_m = pr->dmac_m[4];
  644. data_m = (data_m << 8) | pr->dmac_m[5];
  645. break;
  646. case TEMPLATE_FIELD_DMAC1:
  647. data = pr->dmac[2];
  648. data = (data << 8) | pr->dmac[3];
  649. data_m = pr->dmac_m[2];
  650. data_m = (data_m << 8) | pr->dmac_m[3];
  651. break;
  652. case TEMPLATE_FIELD_DMAC2:
  653. data = pr->dmac[0];
  654. data = (data << 8) | pr->dmac[1];
  655. data_m = pr->dmac_m[0];
  656. data_m = (data_m << 8) | pr->dmac_m[1];
  657. break;
  658. case TEMPLATE_FIELD_ETHERTYPE:
  659. data = pr->ethertype;
  660. data_m = pr->ethertype_m;
  661. break;
  662. case TEMPLATE_FIELD_ITAG:
  663. data = pr->itag;
  664. data_m = pr->itag_m;
  665. break;
  666. case TEMPLATE_FIELD_RANGE_CHK:
  667. data = pr->field_range_check;
  668. data_m = pr->field_range_check_m;
  669. break;
  670. case TEMPLATE_FIELD_SIP0:
  671. if (pr->is_ipv6) {
  672. data = pr->sip6.s6_addr16[7];
  673. data_m = pr->sip6_m.s6_addr16[7];
  674. } else {
  675. data = pr->sip;
  676. data_m = pr->sip_m;
  677. }
  678. break;
  679. case TEMPLATE_FIELD_SIP1:
  680. if (pr->is_ipv6) {
  681. data = pr->sip6.s6_addr16[6];
  682. data_m = pr->sip6_m.s6_addr16[6];
  683. } else {
  684. data = pr->sip >> 16;
  685. data_m = pr->sip_m >> 16;
  686. }
  687. break;
  688. case TEMPLATE_FIELD_SIP2:
  689. case TEMPLATE_FIELD_SIP3:
  690. case TEMPLATE_FIELD_SIP4:
  691. case TEMPLATE_FIELD_SIP5:
  692. case TEMPLATE_FIELD_SIP6:
  693. case TEMPLATE_FIELD_SIP7:
  694. data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
  695. data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
  696. break;
  697. case TEMPLATE_FIELD_DIP0:
  698. if (pr->is_ipv6) {
  699. data = pr->dip6.s6_addr16[7];
  700. data_m = pr->dip6_m.s6_addr16[7];
  701. } else {
  702. data = pr->dip;
  703. data_m = pr->dip_m;
  704. }
  705. break;
  706. case TEMPLATE_FIELD_DIP1:
  707. if (pr->is_ipv6) {
  708. data = pr->dip6.s6_addr16[6];
  709. data_m = pr->dip6_m.s6_addr16[6];
  710. } else {
  711. data = pr->dip >> 16;
  712. data_m = pr->dip_m >> 16;
  713. }
  714. break;
  715. case TEMPLATE_FIELD_DIP2:
  716. case TEMPLATE_FIELD_DIP3:
  717. case TEMPLATE_FIELD_DIP4:
  718. case TEMPLATE_FIELD_DIP5:
  719. case TEMPLATE_FIELD_DIP6:
  720. case TEMPLATE_FIELD_DIP7:
  721. data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
  722. data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
  723. break;
  724. case TEMPLATE_FIELD_IP_TOS_PROTO:
  725. data = pr->tos_proto;
  726. data_m = pr->tos_proto_m;
  727. break;
  728. case TEMPLATE_FIELD_L4_SPORT:
  729. data = pr->sport;
  730. data_m = pr->sport_m;
  731. break;
  732. case TEMPLATE_FIELD_L4_DPORT:
  733. data = pr->dport;
  734. data_m = pr->dport_m;
  735. break;
  736. case TEMPLATE_FIELD_ICMP_IGMP:
  737. data = pr->icmp_igmp;
  738. data_m = pr->icmp_igmp_m;
  739. break;
  740. default:
  741. pr_info("%s: unknown field %d\n", __func__, field_type);
  742. continue;
  743. }
  744. if (!(i % 2)) {
  745. r[5 - i / 2] = data;
  746. r[12 - i / 2] = data_m;
  747. } else {
  748. r[5 - i / 2] |= ((u32)data) << 16;
  749. r[12 - i / 2] |= ((u32)data_m) << 16;
  750. }
  751. }
  752. }
  753. /* Creates the intermediate representation of the templated match-fields of the
  754. * PIE rule in the pie_rule structure by reading the raw data fields in the
  755. * raw register space r[].
  756. * The register space configuration size is identical for the RTL8380/90 and RTL9300,
  757. * however the RTL9310 has 2 more registers / fields and the physical field-ids
  758. */
  759. static void rtl838x_read_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
  760. {
  761. int i;
  762. enum template_field_id field_type;
  763. u16 data, data_m;
  764. for (i = 0; i < N_FIXED_FIELDS; i++) {
  765. field_type = t[i];
  766. if (!(i % 2)) {
  767. data = r[5 - i / 2];
  768. data_m = r[12 - i / 2];
  769. } else {
  770. data = r[5 - i / 2] >> 16;
  771. data_m = r[12 - i / 2] >> 16;
  772. }
  773. switch (field_type) {
  774. case TEMPLATE_FIELD_SPM0:
  775. pr->spm = (pr->spn << 16) | data;
  776. pr->spm_m = (pr->spn << 16) | data_m;
  777. break;
  778. case TEMPLATE_FIELD_SPM1:
  779. pr->spm = data;
  780. pr->spm_m = data_m;
  781. break;
  782. case TEMPLATE_FIELD_OTAG:
  783. pr->otag = data;
  784. pr->otag_m = data_m;
  785. break;
  786. case TEMPLATE_FIELD_SMAC0:
  787. pr->smac[4] = data >> 8;
  788. pr->smac[5] = data;
  789. pr->smac_m[4] = data >> 8;
  790. pr->smac_m[5] = data;
  791. break;
  792. case TEMPLATE_FIELD_SMAC1:
  793. pr->smac[2] = data >> 8;
  794. pr->smac[3] = data;
  795. pr->smac_m[2] = data >> 8;
  796. pr->smac_m[3] = data;
  797. break;
  798. case TEMPLATE_FIELD_SMAC2:
  799. pr->smac[0] = data >> 8;
  800. pr->smac[1] = data;
  801. pr->smac_m[0] = data >> 8;
  802. pr->smac_m[1] = data;
  803. break;
  804. case TEMPLATE_FIELD_DMAC0:
  805. pr->dmac[4] = data >> 8;
  806. pr->dmac[5] = data;
  807. pr->dmac_m[4] = data >> 8;
  808. pr->dmac_m[5] = data;
  809. break;
  810. case TEMPLATE_FIELD_DMAC1:
  811. pr->dmac[2] = data >> 8;
  812. pr->dmac[3] = data;
  813. pr->dmac_m[2] = data >> 8;
  814. pr->dmac_m[3] = data;
  815. break;
  816. case TEMPLATE_FIELD_DMAC2:
  817. pr->dmac[0] = data >> 8;
  818. pr->dmac[1] = data;
  819. pr->dmac_m[0] = data >> 8;
  820. pr->dmac_m[1] = data;
  821. break;
  822. case TEMPLATE_FIELD_ETHERTYPE:
  823. pr->ethertype = data;
  824. pr->ethertype_m = data_m;
  825. break;
  826. case TEMPLATE_FIELD_ITAG:
  827. pr->itag = data;
  828. pr->itag_m = data_m;
  829. break;
  830. case TEMPLATE_FIELD_RANGE_CHK:
  831. pr->field_range_check = data;
  832. pr->field_range_check_m = data_m;
  833. break;
  834. case TEMPLATE_FIELD_SIP0:
  835. pr->sip = data;
  836. pr->sip_m = data_m;
  837. break;
  838. case TEMPLATE_FIELD_SIP1:
  839. pr->sip = (pr->sip << 16) | data;
  840. pr->sip_m = (pr->sip << 16) | data_m;
  841. break;
  842. case TEMPLATE_FIELD_SIP2:
  843. pr->is_ipv6 = true;
  844. // Make use of limitiations on the position of the match values
  845. ipv6_addr_set(&pr->sip6, pr->sip, r[5 - i / 2],
  846. r[4 - i / 2], r[3 - i / 2]);
  847. ipv6_addr_set(&pr->sip6_m, pr->sip_m, r[5 - i / 2],
  848. r[4 - i / 2], r[3 - i / 2]);
  849. case TEMPLATE_FIELD_SIP3:
  850. case TEMPLATE_FIELD_SIP4:
  851. case TEMPLATE_FIELD_SIP5:
  852. case TEMPLATE_FIELD_SIP6:
  853. case TEMPLATE_FIELD_SIP7:
  854. break;
  855. case TEMPLATE_FIELD_DIP0:
  856. pr->dip = data;
  857. pr->dip_m = data_m;
  858. break;
  859. case TEMPLATE_FIELD_DIP1:
  860. pr->dip = (pr->dip << 16) | data;
  861. pr->dip_m = (pr->dip << 16) | data_m;
  862. break;
  863. case TEMPLATE_FIELD_DIP2:
  864. pr->is_ipv6 = true;
  865. ipv6_addr_set(&pr->dip6, pr->dip, r[5 - i / 2],
  866. r[4 - i / 2], r[3 - i / 2]);
  867. ipv6_addr_set(&pr->dip6_m, pr->dip_m, r[5 - i / 2],
  868. r[4 - i / 2], r[3 - i / 2]);
  869. case TEMPLATE_FIELD_DIP3:
  870. case TEMPLATE_FIELD_DIP4:
  871. case TEMPLATE_FIELD_DIP5:
  872. case TEMPLATE_FIELD_DIP6:
  873. case TEMPLATE_FIELD_DIP7:
  874. break;
  875. case TEMPLATE_FIELD_IP_TOS_PROTO:
  876. pr->tos_proto = data;
  877. pr->tos_proto_m = data_m;
  878. break;
  879. case TEMPLATE_FIELD_L4_SPORT:
  880. pr->sport = data;
  881. pr->sport_m = data_m;
  882. break;
  883. case TEMPLATE_FIELD_L4_DPORT:
  884. pr->dport = data;
  885. pr->dport_m = data_m;
  886. break;
  887. case TEMPLATE_FIELD_ICMP_IGMP:
  888. pr->icmp_igmp = data;
  889. pr->icmp_igmp_m = data_m;
  890. break;
  891. default:
  892. pr_info("%s: unknown field %d\n", __func__, field_type);
  893. }
  894. }
  895. }
  896. static void rtl838x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr)
  897. {
  898. pr->spmmask_fix = (r[6] >> 22) & 0x3;
  899. pr->spn = (r[6] >> 16) & 0x3f;
  900. pr->mgnt_vlan = (r[6] >> 15) & 1;
  901. pr->dmac_hit_sw = (r[6] >> 14) & 1;
  902. pr->not_first_frag = (r[6] >> 13) & 1;
  903. pr->frame_type_l4 = (r[6] >> 10) & 7;
  904. pr->frame_type = (r[6] >> 8) & 3;
  905. pr->otag_fmt = (r[6] >> 7) & 1;
  906. pr->itag_fmt = (r[6] >> 6) & 1;
  907. pr->otag_exist = (r[6] >> 5) & 1;
  908. pr->itag_exist = (r[6] >> 4) & 1;
  909. pr->frame_type_l2 = (r[6] >> 2) & 3;
  910. pr->tid = r[6] & 3;
  911. pr->spmmask_fix_m = (r[13] >> 22) & 0x3;
  912. pr->spn_m = (r[13] >> 16) & 0x3f;
  913. pr->mgnt_vlan_m = (r[13] >> 15) & 1;
  914. pr->dmac_hit_sw_m = (r[13] >> 14) & 1;
  915. pr->not_first_frag_m = (r[13] >> 13) & 1;
  916. pr->frame_type_l4_m = (r[13] >> 10) & 7;
  917. pr->frame_type_m = (r[13] >> 8) & 3;
  918. pr->otag_fmt_m = (r[13] >> 7) & 1;
  919. pr->itag_fmt_m = (r[13] >> 6) & 1;
  920. pr->otag_exist_m = (r[13] >> 5) & 1;
  921. pr->itag_exist_m = (r[13] >> 4) & 1;
  922. pr->frame_type_l2_m = (r[13] >> 2) & 3;
  923. pr->tid_m = r[13] & 3;
  924. pr->valid = r[14] & BIT(31);
  925. pr->cond_not = r[14] & BIT(30);
  926. pr->cond_and1 = r[14] & BIT(29);
  927. pr->cond_and2 = r[14] & BIT(28);
  928. pr->ivalid = r[14] & BIT(27);
  929. pr->drop = (r[17] >> 14) & 3;
  930. pr->fwd_sel = r[17] & BIT(13);
  931. pr->ovid_sel = r[17] & BIT(12);
  932. pr->ivid_sel = r[17] & BIT(11);
  933. pr->flt_sel = r[17] & BIT(10);
  934. pr->log_sel = r[17] & BIT(9);
  935. pr->rmk_sel = r[17] & BIT(8);
  936. pr->meter_sel = r[17] & BIT(7);
  937. pr->tagst_sel = r[17] & BIT(6);
  938. pr->mir_sel = r[17] & BIT(5);
  939. pr->nopri_sel = r[17] & BIT(4);
  940. pr->cpupri_sel = r[17] & BIT(3);
  941. pr->otpid_sel = r[17] & BIT(2);
  942. pr->itpid_sel = r[17] & BIT(1);
  943. pr->shaper_sel = r[17] & BIT(0);
  944. }
  945. static void rtl838x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr)
  946. {
  947. r[6] = ((u32) (pr->spmmask_fix & 0x3)) << 22;
  948. r[6] |= ((u32) (pr->spn & 0x3f)) << 16;
  949. r[6] |= pr->mgnt_vlan ? BIT(15) : 0;
  950. r[6] |= pr->dmac_hit_sw ? BIT(14) : 0;
  951. r[6] |= pr->not_first_frag ? BIT(13) : 0;
  952. r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 10;
  953. r[6] |= ((u32) (pr->frame_type & 0x3)) << 8;
  954. r[6] |= pr->otag_fmt ? BIT(7) : 0;
  955. r[6] |= pr->itag_fmt ? BIT(6) : 0;
  956. r[6] |= pr->otag_exist ? BIT(5) : 0;
  957. r[6] |= pr->itag_exist ? BIT(4) : 0;
  958. r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 2;
  959. r[6] |= ((u32) (pr->tid & 0x3));
  960. r[13] = ((u32) (pr->spmmask_fix_m & 0x3)) << 22;
  961. r[13] |= ((u32) (pr->spn_m & 0x3f)) << 16;
  962. r[13] |= pr->mgnt_vlan_m ? BIT(15) : 0;
  963. r[13] |= pr->dmac_hit_sw_m ? BIT(14) : 0;
  964. r[13] |= pr->not_first_frag_m ? BIT(13) : 0;
  965. r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 10;
  966. r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 8;
  967. r[13] |= pr->otag_fmt_m ? BIT(7) : 0;
  968. r[13] |= pr->itag_fmt_m ? BIT(6) : 0;
  969. r[13] |= pr->otag_exist_m ? BIT(5) : 0;
  970. r[13] |= pr->itag_exist_m ? BIT(4) : 0;
  971. r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 2;
  972. r[13] |= ((u32) (pr->tid_m & 0x3));
  973. r[14] = pr->valid ? BIT(31) : 0;
  974. r[14] |= pr->cond_not ? BIT(30) : 0;
  975. r[14] |= pr->cond_and1 ? BIT(29) : 0;
  976. r[14] |= pr->cond_and2 ? BIT(28) : 0;
  977. r[14] |= pr->ivalid ? BIT(27) : 0;
  978. if (pr->drop)
  979. r[17] = 0x1 << 14; // Standard drop action
  980. else
  981. r[17] = 0;
  982. r[17] |= pr->fwd_sel ? BIT(13) : 0;
  983. r[17] |= pr->ovid_sel ? BIT(12) : 0;
  984. r[17] |= pr->ivid_sel ? BIT(11) : 0;
  985. r[17] |= pr->flt_sel ? BIT(10) : 0;
  986. r[17] |= pr->log_sel ? BIT(9) : 0;
  987. r[17] |= pr->rmk_sel ? BIT(8) : 0;
  988. r[17] |= pr->meter_sel ? BIT(7) : 0;
  989. r[17] |= pr->tagst_sel ? BIT(6) : 0;
  990. r[17] |= pr->mir_sel ? BIT(5) : 0;
  991. r[17] |= pr->nopri_sel ? BIT(4) : 0;
  992. r[17] |= pr->cpupri_sel ? BIT(3) : 0;
  993. r[17] |= pr->otpid_sel ? BIT(2) : 0;
  994. r[17] |= pr->itpid_sel ? BIT(1) : 0;
  995. r[17] |= pr->shaper_sel ? BIT(0) : 0;
  996. }
  997. static int rtl838x_write_pie_action(u32 r[], struct pie_rule *pr)
  998. {
  999. u16 *aif = (u16 *)&r[17];
  1000. u16 data;
  1001. int fields_used = 0;
  1002. aif--;
  1003. pr_debug("%s, at %08x\n", __func__, (u32)aif);
  1004. /* Multiple actions can be linked to a match of a PIE rule,
  1005. * they have different precedence depending on their type and this precedence
  1006. * defines which Action Information Field (0-4) in the IACL table stores
  1007. * the additional data of the action (like e.g. the port number a packet is
  1008. * forwarded to) */
  1009. // TODO: count bits in selectors to limit to a maximum number of actions
  1010. if (pr->fwd_sel) { // Forwarding action
  1011. data = pr->fwd_act << 13;
  1012. data |= pr->fwd_data;
  1013. data |= pr->bypass_all ? BIT(12) : 0;
  1014. data |= pr->bypass_ibc_sc ? BIT(11) : 0;
  1015. data |= pr->bypass_igr_stp ? BIT(10) : 0;
  1016. *aif-- = data;
  1017. fields_used++;
  1018. }
  1019. if (pr->ovid_sel) { // Outer VID action
  1020. data = (pr->ovid_act & 0x3) << 12;
  1021. data |= pr->ovid_data;
  1022. *aif-- = data;
  1023. fields_used++;
  1024. }
  1025. if (pr->ivid_sel) { // Inner VID action
  1026. data = (pr->ivid_act & 0x3) << 12;
  1027. data |= pr->ivid_data;
  1028. *aif-- = data;
  1029. fields_used++;
  1030. }
  1031. if (pr->flt_sel) { // Filter action
  1032. *aif-- = pr->flt_data;
  1033. fields_used++;
  1034. }
  1035. if (pr->log_sel) { // Log action
  1036. if (fields_used >= 4)
  1037. return -1;
  1038. *aif-- = pr->log_data;
  1039. fields_used++;
  1040. }
  1041. if (pr->rmk_sel) { // Remark action
  1042. if (fields_used >= 4)
  1043. return -1;
  1044. *aif-- = pr->rmk_data;
  1045. fields_used++;
  1046. }
  1047. if (pr->meter_sel) { // Meter action
  1048. if (fields_used >= 4)
  1049. return -1;
  1050. *aif-- = pr->meter_data;
  1051. fields_used++;
  1052. }
  1053. if (pr->tagst_sel) { // Egress Tag Status action
  1054. if (fields_used >= 4)
  1055. return -1;
  1056. *aif-- = pr->tagst_data;
  1057. fields_used++;
  1058. }
  1059. if (pr->mir_sel) { // Mirror action
  1060. if (fields_used >= 4)
  1061. return -1;
  1062. *aif-- = pr->mir_data;
  1063. fields_used++;
  1064. }
  1065. if (pr->nopri_sel) { // Normal Priority action
  1066. if (fields_used >= 4)
  1067. return -1;
  1068. *aif-- = pr->nopri_data;
  1069. fields_used++;
  1070. }
  1071. if (pr->cpupri_sel) { // CPU Priority action
  1072. if (fields_used >= 4)
  1073. return -1;
  1074. *aif-- = pr->nopri_data;
  1075. fields_used++;
  1076. }
  1077. if (pr->otpid_sel) { // OTPID action
  1078. if (fields_used >= 4)
  1079. return -1;
  1080. *aif-- = pr->otpid_data;
  1081. fields_used++;
  1082. }
  1083. if (pr->itpid_sel) { // ITPID action
  1084. if (fields_used >= 4)
  1085. return -1;
  1086. *aif-- = pr->itpid_data;
  1087. fields_used++;
  1088. }
  1089. if (pr->shaper_sel) { // Traffic shaper action
  1090. if (fields_used >= 4)
  1091. return -1;
  1092. *aif-- = pr->shaper_data;
  1093. fields_used++;
  1094. }
  1095. return 0;
  1096. }
  1097. static void rtl838x_read_pie_action(u32 r[], struct pie_rule *pr)
  1098. {
  1099. u16 *aif = (u16 *)&r[17];
  1100. aif--;
  1101. pr_debug("%s, at %08x\n", __func__, (u32)aif);
  1102. if (pr->drop)
  1103. pr_debug("%s: Action Drop: %d", __func__, pr->drop);
  1104. if (pr->fwd_sel){ // Forwarding action
  1105. pr->fwd_act = *aif >> 13;
  1106. pr->fwd_data = *aif--;
  1107. pr->bypass_all = pr->fwd_data & BIT(12);
  1108. pr->bypass_ibc_sc = pr->fwd_data & BIT(11);
  1109. pr->bypass_igr_stp = pr->fwd_data & BIT(10);
  1110. if (pr->bypass_all || pr->bypass_ibc_sc || pr->bypass_igr_stp)
  1111. pr->bypass_sel = true;
  1112. }
  1113. if (pr->ovid_sel) // Outer VID action
  1114. pr->ovid_data = *aif--;
  1115. if (pr->ivid_sel) // Inner VID action
  1116. pr->ivid_data = *aif--;
  1117. if (pr->flt_sel) // Filter action
  1118. pr->flt_data = *aif--;
  1119. if (pr->log_sel) // Log action
  1120. pr->log_data = *aif--;
  1121. if (pr->rmk_sel) // Remark action
  1122. pr->rmk_data = *aif--;
  1123. if (pr->meter_sel) // Meter action
  1124. pr->meter_data = *aif--;
  1125. if (pr->tagst_sel) // Egress Tag Status action
  1126. pr->tagst_data = *aif--;
  1127. if (pr->mir_sel) // Mirror action
  1128. pr->mir_data = *aif--;
  1129. if (pr->nopri_sel) // Normal Priority action
  1130. pr->nopri_data = *aif--;
  1131. if (pr->cpupri_sel) // CPU Priority action
  1132. pr->nopri_data = *aif--;
  1133. if (pr->otpid_sel) // OTPID action
  1134. pr->otpid_data = *aif--;
  1135. if (pr->itpid_sel) // ITPID action
  1136. pr->itpid_data = *aif--;
  1137. if (pr->shaper_sel) // Traffic shaper action
  1138. pr->shaper_data = *aif--;
  1139. }
  1140. static void rtl838x_pie_rule_dump_raw(u32 r[])
  1141. {
  1142. pr_info("Raw IACL table entry:\n");
  1143. pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]);
  1144. pr_info("Fixed : %08x\n", r[6]);
  1145. pr_info("Match M: %08x %08x %08x %08x %08x %08x\n", r[7], r[8], r[9], r[10], r[11], r[12]);
  1146. pr_info("Fixed M: %08x\n", r[13]);
  1147. pr_info("AIF : %08x %08x %08x\n", r[14], r[15], r[16]);
  1148. pr_info("Sel : %08x\n", r[17]);
  1149. }
  1150. static void rtl838x_pie_rule_dump(struct pie_rule *pr)
  1151. {
  1152. pr_info("Drop: %d, fwd: %d, ovid: %d, ivid: %d, flt: %d, log: %d, rmk: %d, meter: %d tagst: %d, mir: %d, nopri: %d, cpupri: %d, otpid: %d, itpid: %d, shape: %d\n",
  1153. pr->drop, pr->fwd_sel, pr->ovid_sel, pr->ivid_sel, pr->flt_sel, pr->log_sel, pr->rmk_sel, pr->log_sel, pr->tagst_sel, pr->mir_sel, pr->nopri_sel,
  1154. pr->cpupri_sel, pr->otpid_sel, pr->itpid_sel, pr->shaper_sel);
  1155. if (pr->fwd_sel)
  1156. pr_info("FWD: %08x\n", pr->fwd_data);
  1157. pr_info("TID: %x, %x\n", pr->tid, pr->tid_m);
  1158. }
  1159. static int rtl838x_pie_rule_read(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
  1160. {
  1161. // Read IACL table (1) via register 0
  1162. struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
  1163. u32 r[18];
  1164. int i;
  1165. int block = idx / PIE_BLOCK_SIZE;
  1166. u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));
  1167. memset(pr, 0, sizeof(*pr));
  1168. rtl_table_read(q, idx);
  1169. for (i = 0; i < 18; i++)
  1170. r[i] = sw_r32(rtl_table_data(q, i));
  1171. rtl_table_release(q);
  1172. rtl838x_read_pie_fixed_fields(r, pr);
  1173. if (!pr->valid)
  1174. return 0;
  1175. pr_info("%s: template_selectors %08x, tid: %d\n", __func__, t_select, pr->tid);
  1176. rtl838x_pie_rule_dump_raw(r);
  1177. rtl838x_read_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
  1178. rtl838x_read_pie_action(r, pr);
  1179. return 0;
  1180. }
  1181. static int rtl838x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
  1182. {
  1183. // Access IACL table (1) via register 0
  1184. struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
  1185. u32 r[18];
  1186. int i, err = 0;
  1187. int block = idx / PIE_BLOCK_SIZE;
  1188. u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));
  1189. pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select);
  1190. for (i = 0; i < 18; i++)
  1191. r[i] = 0;
  1192. if (!pr->valid)
  1193. goto err_out;
  1194. rtl838x_write_pie_fixed_fields(r, pr);
  1195. pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 3)) & 0x7);
  1196. rtl838x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
  1197. if (rtl838x_write_pie_action(r, pr)) {
  1198. pr_err("Rule actions too complex\n");
  1199. goto err_out;
  1200. }
  1201. // rtl838x_pie_rule_dump_raw(r);
  1202. for (i = 0; i < 18; i++)
  1203. sw_w32(r[i], rtl_table_data(q, i));
  1204. err_out:
  1205. rtl_table_write(q, idx);
  1206. rtl_table_release(q);
  1207. return err;
  1208. }
  1209. static bool rtl838x_pie_templ_has(int t, enum template_field_id field_type)
  1210. {
  1211. int i;
  1212. enum template_field_id ft;
  1213. for (i = 0; i < N_FIXED_FIELDS; i++) {
  1214. ft = fixed_templates[t][i];
  1215. if (field_type == ft)
  1216. return true;
  1217. }
  1218. return false;
  1219. }
  1220. static int rtl838x_pie_verify_template(struct rtl838x_switch_priv *priv,
  1221. struct pie_rule *pr, int t, int block)
  1222. {
  1223. int i;
  1224. if (!pr->is_ipv6 && pr->sip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP0))
  1225. return -1;
  1226. if (!pr->is_ipv6 && pr->dip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP0))
  1227. return -1;
  1228. if (pr->is_ipv6) {
  1229. if ((pr->sip6_m.s6_addr32[0] ||
  1230. pr->sip6_m.s6_addr32[1] ||
  1231. pr->sip6_m.s6_addr32[2] ||
  1232. pr->sip6_m.s6_addr32[3]) &&
  1233. !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP2))
  1234. return -1;
  1235. if ((pr->dip6_m.s6_addr32[0] ||
  1236. pr->dip6_m.s6_addr32[1] ||
  1237. pr->dip6_m.s6_addr32[2] ||
  1238. pr->dip6_m.s6_addr32[3]) &&
  1239. !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP2))
  1240. return -1;
  1241. }
  1242. if (ether_addr_to_u64(pr->smac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0))
  1243. return -1;
  1244. if (ether_addr_to_u64(pr->dmac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0))
  1245. return -1;
  1246. // TODO: Check more
  1247. i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE);
  1248. if (i >= PIE_BLOCK_SIZE)
  1249. return -1;
  1250. return i + PIE_BLOCK_SIZE * block;
  1251. }
  1252. static int rtl838x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
  1253. {
  1254. int idx, block, j, t;
  1255. pr_debug("In %s\n", __func__);
  1256. mutex_lock(&priv->pie_mutex);
  1257. for (block = 0; block < priv->n_pie_blocks; block++) {
  1258. for (j = 0; j < 3; j++) {
  1259. t = (sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block)) >> (j * 3)) & 0x7;
  1260. pr_debug("Testing block %d, template %d, template id %d\n", block, j, t);
  1261. idx = rtl838x_pie_verify_template(priv, pr, t, block);
  1262. if (idx >= 0)
  1263. break;
  1264. }
  1265. if (j < 3)
  1266. break;
  1267. }
  1268. if (block >= priv->n_pie_blocks) {
  1269. mutex_unlock(&priv->pie_mutex);
  1270. return -EOPNOTSUPP;
  1271. }
  1272. pr_debug("Using block: %d, index %d, template-id %d\n", block, idx, j);
  1273. set_bit(idx, priv->pie_use_bm);
  1274. pr->valid = true;
  1275. pr->tid = j; // Mapped to template number
  1276. pr->tid_m = 0x3;
  1277. pr->id = idx;
  1278. rtl838x_pie_lookup_enable(priv, idx);
  1279. rtl838x_pie_rule_write(priv, idx, pr);
  1280. mutex_unlock(&priv->pie_mutex);
  1281. return 0;
  1282. }
  1283. static void rtl838x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
  1284. {
  1285. int idx = pr->id;
  1286. rtl838x_pie_rule_del(priv, idx, idx);
  1287. clear_bit(idx, priv->pie_use_bm);
  1288. }
  1289. /* Initializes the Packet Inspection Engine:
  1290. * powers it up, enables default matching templates for all blocks
  1291. * and clears all rules possibly installed by u-boot
  1292. */
  1293. static void rtl838x_pie_init(struct rtl838x_switch_priv *priv)
  1294. {
  1295. int i;
  1296. u32 template_selectors;
  1297. mutex_init(&priv->pie_mutex);
  1298. // Enable ACL lookup on all ports, including CPU_PORT
  1299. for (i = 0; i <= priv->cpu_port; i++)
  1300. sw_w32(1, RTL838X_ACL_PORT_LOOKUP_CTRL(i));
  1301. // Power on all PIE blocks
  1302. for (i = 0; i < priv->n_pie_blocks; i++)
  1303. sw_w32_mask(0, BIT(i), RTL838X_ACL_BLK_PWR_CTRL);
  1304. // Include IPG in metering
  1305. sw_w32(1, RTL838X_METER_GLB_CTRL);
  1306. // Delete all present rules
  1307. rtl838x_pie_rule_del(priv, 0, priv->n_pie_blocks * PIE_BLOCK_SIZE - 1);
  1308. // Routing bypasses source port filter: disable write-protection, first
  1309. sw_w32_mask(0, 3, RTL838X_INT_RW_CTRL);
  1310. sw_w32_mask(0, 1, RTL838X_DMY_REG27);
  1311. sw_w32_mask(3, 0, RTL838X_INT_RW_CTRL);
  1312. // Enable predefined templates 0, 1 and 2 for even blocks
  1313. template_selectors = 0 | (1 << 3) | (2 << 6);
  1314. for (i = 0; i < 6; i += 2)
  1315. sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));
  1316. // Enable predefined templates 0, 3 and 4 (IPv6 support) for odd blocks
  1317. template_selectors = 0 | (3 << 3) | (4 << 6);
  1318. for (i = 1; i < priv->n_pie_blocks; i += 2)
  1319. sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));
  1320. // Group each pair of physical blocks together to a logical block
  1321. sw_w32(0b10101010101, RTL838X_ACL_BLK_GROUP_CTRL);
  1322. }
  1323. static u32 rtl838x_packet_cntr_read(int counter)
  1324. {
  1325. u32 v;
  1326. // Read LOG table (3) via register RTL8380_TBL_0
  1327. struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);
  1328. pr_debug("In %s, id %d\n", __func__, counter);
  1329. rtl_table_read(r, counter / 2);
  1330. pr_debug("Registers: %08x %08x\n",
  1331. sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)));
  1332. // The table has a size of 2 registers
  1333. if (counter % 2)
  1334. v = sw_r32(rtl_table_data(r, 0));
  1335. else
  1336. v = sw_r32(rtl_table_data(r, 1));
  1337. rtl_table_release(r);
  1338. return v;
  1339. }
  1340. static void rtl838x_packet_cntr_clear(int counter)
  1341. {
  1342. // Access LOG table (3) via register RTL8380_TBL_0
  1343. struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);
  1344. pr_debug("In %s, id %d\n", __func__, counter);
  1345. // The table has a size of 2 registers
  1346. if (counter % 2)
  1347. sw_w32(0, rtl_table_data(r, 0));
  1348. else
  1349. sw_w32(0, rtl_table_data(r, 1));
  1350. rtl_table_write(r, counter / 2);
  1351. rtl_table_release(r);
  1352. }
  1353. static void rtl838x_route_read(int idx, struct rtl83xx_route *rt)
  1354. {
  1355. // Read ROUTING table (2) via register RTL8380_TBL_1
  1356. struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
  1357. pr_debug("In %s, id %d\n", __func__, idx);
  1358. rtl_table_read(r, idx);
  1359. // The table has a size of 2 registers
  1360. rt->nh.gw = sw_r32(rtl_table_data(r, 0));
  1361. rt->nh.gw <<= 32;
  1362. rt->nh.gw |= sw_r32(rtl_table_data(r, 1));
  1363. rtl_table_release(r);
  1364. }
  1365. static void rtl838x_route_write(int idx, struct rtl83xx_route *rt)
  1366. {
  1367. // Access ROUTING table (2) via register RTL8380_TBL_1
  1368. struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
  1369. pr_debug("In %s, id %d, gw: %016llx\n", __func__, idx, rt->nh.gw);
  1370. sw_w32(rt->nh.gw >> 32, rtl_table_data(r, 0));
  1371. sw_w32(rt->nh.gw, rtl_table_data(r, 1));
  1372. rtl_table_write(r, idx);
  1373. rtl_table_release(r);
  1374. }
  1375. static int rtl838x_l3_setup(struct rtl838x_switch_priv *priv)
  1376. {
  1377. // Nothing to be done
  1378. return 0;
  1379. }
  1380. void rtl838x_vlan_port_keep_tag_set(int port, bool keep_outer, bool keep_inner)
  1381. {
  1382. sw_w32(FIELD_PREP(RTL838X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK,
  1383. keep_outer ? RTL838X_VLAN_PORT_TAG_STS_TAGGED : RTL838X_VLAN_PORT_TAG_STS_UNTAG) |
  1384. FIELD_PREP(RTL838X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK,
  1385. keep_inner ? RTL838X_VLAN_PORT_TAG_STS_TAGGED : RTL838X_VLAN_PORT_TAG_STS_UNTAG),
  1386. RTL838X_VLAN_PORT_TAG_STS_CTRL(port));
  1387. }
  1388. void rtl838x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode)
  1389. {
  1390. if (type == PBVLAN_TYPE_INNER)
  1391. sw_w32_mask(0x3, mode, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
  1392. else
  1393. sw_w32_mask(0x3 << 14, mode << 14, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
  1394. }
  1395. void rtl838x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid)
  1396. {
  1397. if (type == PBVLAN_TYPE_INNER)
  1398. sw_w32_mask(0xfff << 2, pvid << 2, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
  1399. else
  1400. sw_w32_mask(0xfff << 16, pvid << 16, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
  1401. }
  1402. static int rtl838x_set_ageing_time(unsigned long msec)
  1403. {
  1404. int t = sw_r32(RTL838X_L2_CTRL_1);
  1405. t &= 0x7FFFFF;
  1406. t = t * 128 / 625; /* Aging time in seconds. 0: L2 aging disabled */
  1407. pr_debug("L2 AGING time: %d sec\n", t);
  1408. t = (msec * 625 + 127000) / 128000;
  1409. t = t > 0x7FFFFF ? 0x7FFFFF : t;
  1410. sw_w32_mask(0x7FFFFF, t, RTL838X_L2_CTRL_1);
  1411. pr_debug("Dynamic aging for ports: %x\n", sw_r32(RTL838X_L2_PORT_AGING_OUT));
  1412. return 0;
  1413. }
  1414. static void rtl838x_set_igr_filter(int port, enum igr_filter state)
  1415. {
  1416. sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1),
  1417. RTL838X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2)));
  1418. }
  1419. static void rtl838x_set_egr_filter(int port, enum egr_filter state)
  1420. {
  1421. sw_w32_mask(0x1 << (port % 0x1d), state << (port % 0x1d),
  1422. RTL838X_VLAN_PORT_EGR_FLTR + (((port / 29) << 2)));
  1423. }
  1424. void rtl838x_set_distribution_algorithm(int group, int algoidx, u32 algomsk)
  1425. {
  1426. algoidx &= 1; // RTL838X only supports 2 concurrent algorithms
  1427. sw_w32_mask(1 << (group % 8), algoidx << (group % 8),
  1428. RTL838X_TRK_HASH_IDX_CTRL + ((group >> 3) << 2));
  1429. sw_w32(algomsk, RTL838X_TRK_HASH_CTRL + (algoidx << 2));
  1430. }
  1431. void rtl838x_set_receive_management_action(int port, rma_ctrl_t type, action_type_t action)
  1432. {
  1433. switch(type) {
  1434. case BPDU:
  1435. sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
  1436. RTL838X_RMA_BPDU_CTRL + ((port >> 4) << 2));
  1437. break;
  1438. case PTP:
  1439. sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
  1440. RTL838X_RMA_PTP_CTRL + ((port >> 4) << 2));
  1441. break;
  1442. case LLTP:
  1443. sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
  1444. RTL838X_RMA_LLTP_CTRL + ((port >> 4) << 2));
  1445. break;
  1446. default:
  1447. break;
  1448. }
  1449. }
  1450. const struct rtl838x_reg rtl838x_reg = {
  1451. .mask_port_reg_be = rtl838x_mask_port_reg,
  1452. .set_port_reg_be = rtl838x_set_port_reg,
  1453. .get_port_reg_be = rtl838x_get_port_reg,
  1454. .mask_port_reg_le = rtl838x_mask_port_reg,
  1455. .set_port_reg_le = rtl838x_set_port_reg,
  1456. .get_port_reg_le = rtl838x_get_port_reg,
  1457. .stat_port_rst = RTL838X_STAT_PORT_RST,
  1458. .stat_rst = RTL838X_STAT_RST,
  1459. .stat_port_std_mib = RTL838X_STAT_PORT_STD_MIB,
  1460. .port_iso_ctrl = rtl838x_port_iso_ctrl,
  1461. .traffic_enable = rtl838x_traffic_enable,
  1462. .traffic_disable = rtl838x_traffic_disable,
  1463. .traffic_get = rtl838x_traffic_get,
  1464. .traffic_set = rtl838x_traffic_set,
  1465. .l2_ctrl_0 = RTL838X_L2_CTRL_0,
  1466. .l2_ctrl_1 = RTL838X_L2_CTRL_1,
  1467. .l2_port_aging_out = RTL838X_L2_PORT_AGING_OUT,
  1468. .set_ageing_time = rtl838x_set_ageing_time,
  1469. .smi_poll_ctrl = RTL838X_SMI_POLL_CTRL,
  1470. .l2_tbl_flush_ctrl = RTL838X_L2_TBL_FLUSH_CTRL,
  1471. .exec_tbl0_cmd = rtl838x_exec_tbl0_cmd,
  1472. .exec_tbl1_cmd = rtl838x_exec_tbl1_cmd,
  1473. .tbl_access_data_0 = rtl838x_tbl_access_data_0,
  1474. .isr_glb_src = RTL838X_ISR_GLB_SRC,
  1475. .isr_port_link_sts_chg = RTL838X_ISR_PORT_LINK_STS_CHG,
  1476. .imr_port_link_sts_chg = RTL838X_IMR_PORT_LINK_STS_CHG,
  1477. .imr_glb = RTL838X_IMR_GLB,
  1478. .vlan_tables_read = rtl838x_vlan_tables_read,
  1479. .vlan_set_tagged = rtl838x_vlan_set_tagged,
  1480. .vlan_set_untagged = rtl838x_vlan_set_untagged,
  1481. .mac_force_mode_ctrl = rtl838x_mac_force_mode_ctrl,
  1482. .vlan_profile_dump = rtl838x_vlan_profile_dump,
  1483. .vlan_profile_setup = rtl838x_vlan_profile_setup,
  1484. .vlan_fwd_on_inner = rtl838x_vlan_fwd_on_inner,
  1485. .set_vlan_igr_filter = rtl838x_set_igr_filter,
  1486. .set_vlan_egr_filter = rtl838x_set_egr_filter,
  1487. .enable_learning = rtl838x_enable_learning,
  1488. .enable_flood = rtl838x_enable_flood,
  1489. .enable_mcast_flood = rtl838x_enable_mcast_flood,
  1490. .enable_bcast_flood = rtl838x_enable_bcast_flood,
  1491. .stp_get = rtl838x_stp_get,
  1492. .stp_set = rtl838x_stp_set,
  1493. .mac_port_ctrl = rtl838x_mac_port_ctrl,
  1494. .l2_port_new_salrn = rtl838x_l2_port_new_salrn,
  1495. .l2_port_new_sa_fwd = rtl838x_l2_port_new_sa_fwd,
  1496. .mir_ctrl = RTL838X_MIR_CTRL,
  1497. .mir_dpm = RTL838X_MIR_DPM_CTRL,
  1498. .mir_spm = RTL838X_MIR_SPM_CTRL,
  1499. .mac_link_sts = RTL838X_MAC_LINK_STS,
  1500. .mac_link_dup_sts = RTL838X_MAC_LINK_DUP_STS,
  1501. .mac_link_spd_sts = rtl838x_mac_link_spd_sts,
  1502. .mac_rx_pause_sts = RTL838X_MAC_RX_PAUSE_STS,
  1503. .mac_tx_pause_sts = RTL838X_MAC_TX_PAUSE_STS,
  1504. .read_l2_entry_using_hash = rtl838x_read_l2_entry_using_hash,
  1505. .write_l2_entry_using_hash = rtl838x_write_l2_entry_using_hash,
  1506. .read_cam = rtl838x_read_cam,
  1507. .write_cam = rtl838x_write_cam,
  1508. .vlan_port_keep_tag_set = rtl838x_vlan_port_keep_tag_set,
  1509. .vlan_port_pvidmode_set = rtl838x_vlan_port_pvidmode_set,
  1510. .vlan_port_pvid_set = rtl838x_vlan_port_pvid_set,
  1511. .trk_mbr_ctr = rtl838x_trk_mbr_ctr,
  1512. .rma_bpdu_fld_pmask = RTL838X_RMA_BPDU_FLD_PMSK,
  1513. .spcl_trap_eapol_ctrl = RTL838X_SPCL_TRAP_EAPOL_CTRL,
  1514. .init_eee = rtl838x_init_eee,
  1515. .port_eee_set = rtl838x_port_eee_set,
  1516. .eee_port_ability = rtl838x_eee_port_ability,
  1517. .l2_hash_seed = rtl838x_l2_hash_seed,
  1518. .l2_hash_key = rtl838x_l2_hash_key,
  1519. .read_mcast_pmask = rtl838x_read_mcast_pmask,
  1520. .write_mcast_pmask = rtl838x_write_mcast_pmask,
  1521. .pie_init = rtl838x_pie_init,
  1522. .pie_rule_read = rtl838x_pie_rule_read,
  1523. .pie_rule_write = rtl838x_pie_rule_write,
  1524. .pie_rule_add = rtl838x_pie_rule_add,
  1525. .pie_rule_rm = rtl838x_pie_rule_rm,
  1526. .l2_learning_setup = rtl838x_l2_learning_setup,
  1527. .packet_cntr_read = rtl838x_packet_cntr_read,
  1528. .packet_cntr_clear = rtl838x_packet_cntr_clear,
  1529. .route_read = rtl838x_route_read,
  1530. .route_write = rtl838x_route_write,
  1531. .l3_setup = rtl838x_l3_setup,
  1532. .set_distribution_algorithm = rtl838x_set_distribution_algorithm,
  1533. .set_receive_management_action = rtl838x_set_receive_management_action,
  1534. };
  1535. irqreturn_t rtl838x_switch_irq(int irq, void *dev_id)
  1536. {
  1537. struct dsa_switch *ds = dev_id;
  1538. u32 status = sw_r32(RTL838X_ISR_GLB_SRC);
  1539. u32 ports = sw_r32(RTL838X_ISR_PORT_LINK_STS_CHG);
  1540. u32 link;
  1541. int i;
  1542. /* Clear status */
  1543. sw_w32(ports, RTL838X_ISR_PORT_LINK_STS_CHG);
  1544. pr_info("RTL8380 Link change: status: %x, ports %x\n", status, ports);
  1545. for (i = 0; i < 28; i++) {
  1546. if (ports & BIT(i)) {
  1547. link = sw_r32(RTL838X_MAC_LINK_STS);
  1548. if (link & BIT(i))
  1549. dsa_port_phylink_mac_change(ds, i, true);
  1550. else
  1551. dsa_port_phylink_mac_change(ds, i, false);
  1552. }
  1553. }
  1554. return IRQ_HANDLED;
  1555. }
  1556. int rtl838x_smi_wait_op(int timeout)
  1557. {
  1558. int ret = 0;
  1559. u32 val;
  1560. ret = readx_poll_timeout(sw_r32, RTL838X_SMI_ACCESS_PHY_CTRL_1,
  1561. val, !(val & 0x1), 20, timeout);
  1562. if (ret)
  1563. pr_err("%s: timeout\n", __func__);
  1564. return ret;
  1565. }
  1566. /* Reads a register in a page from the PHY */
  1567. int rtl838x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
  1568. {
  1569. int err = -ETIMEDOUT;
  1570. u32 v;
  1571. u32 park_page;
  1572. if (port > 31) {
  1573. *val = 0xffff;
  1574. return 0;
  1575. }
  1576. if (page > 4095 || reg > 31)
  1577. return -ENOTSUPP;
  1578. mutex_lock(&smi_lock);
  1579. if (rtl838x_smi_wait_op(100000))
  1580. goto timeout;
  1581. sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
  1582. park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
  1583. v = reg << 20 | page << 3;
  1584. sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
  1585. sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
  1586. if (rtl838x_smi_wait_op(100000))
  1587. goto timeout;
  1588. *val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
  1589. err = 0;
  1590. timeout:
  1591. mutex_unlock(&smi_lock);
  1592. return -ETIMEDOUT;
  1593. }
  1594. /* Write to a register in a page of the PHY */
  1595. int rtl838x_write_phy(u32 port, u32 page, u32 reg, u32 val)
  1596. {
  1597. int err = -ETIMEDOUT;
  1598. u32 v;
  1599. u32 park_page;
  1600. val &= 0xffff;
  1601. if (port > 31 || page > 4095 || reg > 31)
  1602. return -ENOTSUPP;
  1603. mutex_lock(&smi_lock);
  1604. if (rtl838x_smi_wait_op(100000))
  1605. goto timeout;
  1606. sw_w32(BIT(port), RTL838X_SMI_ACCESS_PHY_CTRL_0);
  1607. mdelay(10);
  1608. sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
  1609. park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
  1610. v = reg << 20 | page << 3 | 0x4;
  1611. sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
  1612. sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
  1613. if (rtl838x_smi_wait_op(100000))
  1614. goto timeout;
  1615. err = 0;
  1616. timeout:
  1617. mutex_unlock(&smi_lock);
  1618. return -ETIMEDOUT;
  1619. }
  1620. /* Read an mmd register of a PHY */
  1621. int rtl838x_read_mmd_phy(u32 port, u32 addr, u32 reg, u32 *val)
  1622. {
  1623. int err = -ETIMEDOUT;
  1624. u32 v;
  1625. mutex_lock(&smi_lock);
  1626. if (rtl838x_smi_wait_op(100000))
  1627. goto timeout;
  1628. sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
  1629. mdelay(10);
  1630. sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
  1631. v = addr << 16 | reg;
  1632. sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_3);
  1633. /* mmd-access | read | cmd-start */
  1634. v = 1 << 1 | 0 << 2 | 1;
  1635. sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
  1636. if (rtl838x_smi_wait_op(100000))
  1637. goto timeout;
  1638. *val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
  1639. err = 0;
  1640. timeout:
  1641. mutex_unlock(&smi_lock);
  1642. return err;
  1643. }
  1644. /* Write to an mmd register of a PHY */
  1645. int rtl838x_write_mmd_phy(u32 port, u32 addr, u32 reg, u32 val)
  1646. {
  1647. int err = -ETIMEDOUT;
  1648. u32 v;
  1649. pr_debug("MMD write: port %d, dev %d, reg %d, val %x\n", port, addr, reg, val);
  1650. val &= 0xffff;
  1651. mutex_lock(&smi_lock);
  1652. if (rtl838x_smi_wait_op(100000))
  1653. goto timeout;
  1654. sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
  1655. mdelay(10);
  1656. sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
  1657. sw_w32_mask(0x1f << 16, addr << 16, RTL838X_SMI_ACCESS_PHY_CTRL_3);
  1658. sw_w32_mask(0xffff, reg, RTL838X_SMI_ACCESS_PHY_CTRL_3);
  1659. /* mmd-access | write | cmd-start */
  1660. v = 1 << 1 | 1 << 2 | 1;
  1661. sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
  1662. if (rtl838x_smi_wait_op(100000))
  1663. goto timeout;
  1664. err = 0;
  1665. timeout:
  1666. mutex_unlock(&smi_lock);
  1667. return err;
  1668. }
  1669. void rtl8380_get_version(struct rtl838x_switch_priv *priv)
  1670. {
  1671. u32 rw_save, info_save;
  1672. u32 info;
  1673. rw_save = sw_r32(RTL838X_INT_RW_CTRL);
  1674. sw_w32(rw_save | 0x3, RTL838X_INT_RW_CTRL);
  1675. info_save = sw_r32(RTL838X_CHIP_INFO);
  1676. sw_w32(info_save | 0xA0000000, RTL838X_CHIP_INFO);
  1677. info = sw_r32(RTL838X_CHIP_INFO);
  1678. sw_w32(info_save, RTL838X_CHIP_INFO);
  1679. sw_w32(rw_save, RTL838X_INT_RW_CTRL);
  1680. if ((info & 0xFFFF) == 0x6275) {
  1681. if (((info >> 16) & 0x1F) == 0x1)
  1682. priv->version = RTL8380_VERSION_A;
  1683. else if (((info >> 16) & 0x1F) == 0x2)
  1684. priv->version = RTL8380_VERSION_B;
  1685. else
  1686. priv->version = RTL8380_VERSION_B;
  1687. } else {
  1688. priv->version = '-';
  1689. }
  1690. }
  1691. void rtl838x_vlan_profile_dump(int profile)
  1692. {
  1693. u32 p;
  1694. if (profile < 0 || profile > 7)
  1695. return;
  1696. p = sw_r32(RTL838X_VLAN_PROFILE(profile));
  1697. pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \
  1698. UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d",
  1699. profile, p & 1, (p >> 1) & 0x1ff, (p >> 10) & 0x1ff, (p >> 19) & 0x1ff);
  1700. }
  1701. void rtl8380_sds_rst(int mac)
  1702. {
  1703. u32 offset = (mac == 24) ? 0 : 0x100;
  1704. sw_w32_mask(1 << 11, 0, RTL838X_SDS4_FIB_REG0 + offset);
  1705. sw_w32_mask(0x3, 0, RTL838X_SDS4_REG28 + offset);
  1706. sw_w32_mask(0x3, 0x3, RTL838X_SDS4_REG28 + offset);
  1707. sw_w32_mask(0, 0x1 << 6, RTL838X_SDS4_DUMMY0 + offset);
  1708. sw_w32_mask(0x1 << 6, 0, RTL838X_SDS4_DUMMY0 + offset);
  1709. pr_debug("SERDES reset: %d\n", mac);
  1710. }
  1711. int rtl8380_sds_power(int mac, int val)
  1712. {
  1713. u32 mode = (val == 1) ? 0x4 : 0x9;
  1714. u32 offset = (mac == 24) ? 5 : 0;
  1715. if ((mac != 24) && (mac != 26)) {
  1716. pr_err("%s: not a fibre port: %d\n", __func__, mac);
  1717. return -1;
  1718. }
  1719. sw_w32_mask(0x1f << offset, mode << offset, RTL838X_SDS_MODE_SEL);
  1720. rtl8380_sds_rst(mac);
  1721. return 0;
  1722. }