mtdsplit_bcm_wfi.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523
  1. /*
  2. * MTD split for Broadcom Whole Flash Image
  3. *
  4. * Copyright (C) 2020 Álvaro Fernández Rojas <[email protected]>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. */
  11. #define je16_to_cpu(x) ((x).v16)
  12. #define je32_to_cpu(x) ((x).v32)
  13. #include <linux/crc32.h>
  14. #include <linux/init.h>
  15. #include <linux/jffs2.h>
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/slab.h>
  19. #include <linux/byteorder/generic.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/mtd/partitions.h>
  22. #include "mtdsplit.h"
  23. #define char_to_num(c) ((c >= '0' && c <= '9') ? (c - '0') : (0))
  24. #define BCM_WFI_PARTS 3
  25. #define BCM_WFI_SPLIT_PARTS 2
  26. #define CFERAM_NAME "cferam"
  27. #define CFERAM_NAME_LEN (sizeof(CFERAM_NAME) - 1)
  28. #define KERNEL_NAME "vmlinux.lz"
  29. #define KERNEL_NAME_LEN (sizeof(KERNEL_NAME) - 1)
  30. #define OPENWRT_NAME "1-openwrt"
  31. #define OPENWRT_NAME_LEN (sizeof(OPENWRT_NAME) - 1)
  32. #define UBI_MAGIC 0x55424923
  33. #define CFE_MAGIC_PFX "cferam."
  34. #define CFE_MAGIC_PFX_LEN (sizeof(CFE_MAGIC_PFX) - 1)
  35. #define CFE_MAGIC "cferam.000"
  36. #define CFE_MAGIC_LEN (sizeof(CFE_MAGIC) - 1)
  37. #define SERCOMM_MAGIC_PFX "eRcOmM."
  38. #define SERCOMM_MAGIC_PFX_LEN (sizeof(SERCOMM_MAGIC_PFX) - 1)
  39. #define SERCOMM_MAGIC "eRcOmM.000"
  40. #define SERCOMM_MAGIC_LEN (sizeof(SERCOMM_MAGIC) - 1)
  41. #define PART_CFERAM "cferam"
  42. #define PART_FIRMWARE "firmware"
  43. #define PART_IMAGE_1 "img1"
  44. #define PART_IMAGE_2 "img2"
  45. static u32 jffs2_dirent_crc(struct jffs2_raw_dirent *node)
  46. {
  47. return crc32(0, node, sizeof(struct jffs2_raw_dirent) - 8);
  48. }
  49. static bool jffs2_dirent_valid(struct jffs2_raw_dirent *node)
  50. {
  51. return ((je16_to_cpu(node->magic) == JFFS2_MAGIC_BITMASK) &&
  52. (je16_to_cpu(node->nodetype) == JFFS2_NODETYPE_DIRENT) &&
  53. je32_to_cpu(node->ino) &&
  54. je32_to_cpu(node->node_crc) == jffs2_dirent_crc(node));
  55. }
  56. static int jffs2_find_file(struct mtd_info *mtd, uint8_t *buf,
  57. const char *name, size_t name_len,
  58. loff_t *offs, loff_t size,
  59. char **out_name, size_t *out_name_len)
  60. {
  61. const loff_t end = *offs + size;
  62. struct jffs2_raw_dirent *node;
  63. bool valid = false;
  64. size_t retlen;
  65. uint16_t magic;
  66. int rc;
  67. for (; *offs < end; *offs += mtd->erasesize) {
  68. unsigned int block_offs = 0;
  69. /* Skip CFE erased blocks */
  70. rc = mtd_read(mtd, *offs, sizeof(magic), &retlen,
  71. (void *) &magic);
  72. if (rc || retlen != sizeof(magic)) {
  73. continue;
  74. }
  75. /* Skip blocks not starting with JFFS2 magic */
  76. if (magic != JFFS2_MAGIC_BITMASK)
  77. continue;
  78. /* Read full block */
  79. rc = mtd_read(mtd, *offs, mtd->erasesize, &retlen,
  80. (void *) buf);
  81. if (rc)
  82. return rc;
  83. if (retlen != mtd->erasesize)
  84. return -EINVAL;
  85. while (block_offs < mtd->erasesize) {
  86. node = (struct jffs2_raw_dirent *) &buf[block_offs];
  87. if (!jffs2_dirent_valid(node)) {
  88. block_offs += 4;
  89. continue;
  90. }
  91. if (!memcmp(node->name, OPENWRT_NAME,
  92. OPENWRT_NAME_LEN)) {
  93. valid = true;
  94. } else if (!memcmp(node->name, name, name_len)) {
  95. if (!valid)
  96. return -EINVAL;
  97. if (out_name)
  98. *out_name = kstrndup(node->name,
  99. node->nsize,
  100. GFP_KERNEL);
  101. if (out_name_len)
  102. *out_name_len = node->nsize;
  103. return 0;
  104. }
  105. block_offs += je32_to_cpu(node->totlen);
  106. block_offs = (block_offs + 0x3) & ~0x3;
  107. }
  108. }
  109. return -ENOENT;
  110. }
  111. static int ubifs_find(struct mtd_info *mtd, loff_t *offs, loff_t size)
  112. {
  113. const loff_t end = *offs + size;
  114. uint32_t magic;
  115. size_t retlen;
  116. int rc;
  117. for (; *offs < end; *offs += mtd->erasesize) {
  118. rc = mtd_read(mtd, *offs, sizeof(magic), &retlen,
  119. (unsigned char *) &magic);
  120. if (rc || retlen != sizeof(magic))
  121. continue;
  122. if (be32_to_cpu(magic) == UBI_MAGIC)
  123. return 0;
  124. }
  125. return -ENOENT;
  126. }
  127. static int parse_bcm_wfi(struct mtd_info *master,
  128. const struct mtd_partition **pparts,
  129. uint8_t *buf, loff_t off, loff_t size, bool cfe_part)
  130. {
  131. struct mtd_partition *parts;
  132. loff_t cfe_off, kernel_off, rootfs_off;
  133. unsigned int num_parts = BCM_WFI_PARTS, cur_part = 0;
  134. int ret;
  135. if (cfe_part) {
  136. num_parts++;
  137. cfe_off = off;
  138. ret = jffs2_find_file(master, buf, CFERAM_NAME,
  139. CFERAM_NAME_LEN, &cfe_off,
  140. size - (cfe_off - off), NULL, NULL);
  141. if (ret)
  142. return ret;
  143. kernel_off = cfe_off + master->erasesize;
  144. } else {
  145. kernel_off = off;
  146. }
  147. ret = jffs2_find_file(master, buf, KERNEL_NAME, KERNEL_NAME_LEN,
  148. &kernel_off, size - (kernel_off - off),
  149. NULL, NULL);
  150. if (ret)
  151. return ret;
  152. rootfs_off = kernel_off + master->erasesize;
  153. ret = ubifs_find(master, &rootfs_off, size - (rootfs_off - off));
  154. if (ret)
  155. return ret;
  156. parts = kzalloc(num_parts * sizeof(*parts), GFP_KERNEL);
  157. if (!parts)
  158. return -ENOMEM;
  159. if (cfe_part) {
  160. parts[cur_part].name = PART_CFERAM;
  161. parts[cur_part].mask_flags = MTD_WRITEABLE;
  162. parts[cur_part].offset = cfe_off;
  163. parts[cur_part].size = kernel_off - cfe_off;
  164. cur_part++;
  165. }
  166. parts[cur_part].name = PART_FIRMWARE;
  167. parts[cur_part].offset = kernel_off;
  168. parts[cur_part].size = size - (kernel_off - off);
  169. cur_part++;
  170. parts[cur_part].name = KERNEL_PART_NAME;
  171. parts[cur_part].offset = kernel_off;
  172. parts[cur_part].size = rootfs_off - kernel_off;
  173. cur_part++;
  174. parts[cur_part].name = UBI_PART_NAME;
  175. parts[cur_part].offset = rootfs_off;
  176. parts[cur_part].size = size - (rootfs_off - off);
  177. cur_part++;
  178. *pparts = parts;
  179. return num_parts;
  180. }
  181. static int mtdsplit_parse_bcm_wfi(struct mtd_info *master,
  182. const struct mtd_partition **pparts,
  183. struct mtd_part_parser_data *data)
  184. {
  185. struct device_node *mtd_node;
  186. bool cfe_part = true;
  187. uint8_t *buf;
  188. int ret;
  189. mtd_node = mtd_get_of_node(master);
  190. if (!mtd_node)
  191. return -EINVAL;
  192. buf = kzalloc(master->erasesize, GFP_KERNEL);
  193. if (!buf)
  194. return -ENOMEM;
  195. if (of_property_read_bool(mtd_node, "brcm,no-cferam"))
  196. cfe_part = false;
  197. ret = parse_bcm_wfi(master, pparts, buf, 0, master->size, cfe_part);
  198. kfree(buf);
  199. return ret;
  200. }
  201. static const struct of_device_id mtdsplit_bcm_wfi_of_match[] = {
  202. { .compatible = "brcm,wfi" },
  203. { },
  204. };
  205. static struct mtd_part_parser mtdsplit_bcm_wfi_parser = {
  206. .owner = THIS_MODULE,
  207. .name = "bcm-wfi-fw",
  208. .of_match_table = mtdsplit_bcm_wfi_of_match,
  209. .parse_fn = mtdsplit_parse_bcm_wfi,
  210. .type = MTD_PARSER_TYPE_FIRMWARE,
  211. };
  212. static int cferam_bootflag_value(const char *name, size_t name_len)
  213. {
  214. int rc = -ENOENT;
  215. if (name &&
  216. (name_len >= CFE_MAGIC_LEN) &&
  217. !memcmp(name, CFE_MAGIC_PFX, CFE_MAGIC_PFX_LEN)) {
  218. rc = char_to_num(name[CFE_MAGIC_PFX_LEN + 0]) * 100;
  219. rc += char_to_num(name[CFE_MAGIC_PFX_LEN + 1]) * 10;
  220. rc += char_to_num(name[CFE_MAGIC_PFX_LEN + 2]) * 1;
  221. }
  222. return rc;
  223. }
  224. static int mtdsplit_parse_bcm_wfi_split(struct mtd_info *master,
  225. const struct mtd_partition **pparts,
  226. struct mtd_part_parser_data *data)
  227. {
  228. struct mtd_partition *parts;
  229. loff_t cfe_off;
  230. loff_t img1_off = 0;
  231. loff_t img2_off = master->size / 2;
  232. loff_t img1_size = (img2_off - img1_off);
  233. loff_t img2_size = (master->size - img2_off);
  234. loff_t active_off, inactive_off;
  235. loff_t active_size, inactive_size;
  236. const char *inactive_name;
  237. uint8_t *buf;
  238. char *cfe1_name = NULL, *cfe2_name = NULL;
  239. size_t cfe1_size = 0, cfe2_size = 0;
  240. int ret;
  241. int bf1, bf2;
  242. buf = kzalloc(master->erasesize, GFP_KERNEL);
  243. if (!buf)
  244. return -ENOMEM;
  245. cfe_off = img1_off;
  246. ret = jffs2_find_file(master, buf, CFERAM_NAME, CFERAM_NAME_LEN,
  247. &cfe_off, img1_size, &cfe1_name, &cfe1_size);
  248. cfe_off = img2_off;
  249. ret = jffs2_find_file(master, buf, CFERAM_NAME, CFERAM_NAME_LEN,
  250. &cfe_off, img2_size, &cfe2_name, &cfe2_size);
  251. bf1 = cferam_bootflag_value(cfe1_name, cfe1_size);
  252. if (bf1 >= 0)
  253. printk("cferam: bootflag1=%d\n", bf1);
  254. bf2 = cferam_bootflag_value(cfe2_name, cfe2_size);
  255. if (bf2 >= 0)
  256. printk("cferam: bootflag2=%d\n", bf2);
  257. kfree(cfe1_name);
  258. kfree(cfe2_name);
  259. if (bf1 >= bf2) {
  260. active_off = img1_off;
  261. active_size = img1_size;
  262. inactive_off = img2_off;
  263. inactive_size = img2_size;
  264. inactive_name = PART_IMAGE_2;
  265. } else {
  266. active_off = img2_off;
  267. active_size = img2_size;
  268. inactive_off = img1_off;
  269. inactive_size = img1_size;
  270. inactive_name = PART_IMAGE_1;
  271. }
  272. ret = parse_bcm_wfi(master, pparts, buf, active_off, active_size, true);
  273. kfree(buf);
  274. if (ret > 0) {
  275. parts = kzalloc((ret + 1) * sizeof(*parts), GFP_KERNEL);
  276. if (!parts)
  277. return -ENOMEM;
  278. memcpy(parts, *pparts, ret * sizeof(*parts));
  279. kfree(*pparts);
  280. parts[ret].name = inactive_name;
  281. parts[ret].offset = inactive_off;
  282. parts[ret].size = inactive_size;
  283. ret++;
  284. *pparts = parts;
  285. } else {
  286. parts = kzalloc(BCM_WFI_SPLIT_PARTS * sizeof(*parts), GFP_KERNEL);
  287. parts[0].name = PART_IMAGE_1;
  288. parts[0].offset = img1_off;
  289. parts[0].size = img1_size;
  290. parts[1].name = PART_IMAGE_2;
  291. parts[1].offset = img2_off;
  292. parts[1].size = img2_size;
  293. *pparts = parts;
  294. }
  295. return ret;
  296. }
  297. static const struct of_device_id mtdsplit_bcm_wfi_split_of_match[] = {
  298. { .compatible = "brcm,wfi-split" },
  299. { },
  300. };
  301. static struct mtd_part_parser mtdsplit_bcm_wfi_split_parser = {
  302. .owner = THIS_MODULE,
  303. .name = "bcm-wfi-split-fw",
  304. .of_match_table = mtdsplit_bcm_wfi_split_of_match,
  305. .parse_fn = mtdsplit_parse_bcm_wfi_split,
  306. .type = MTD_PARSER_TYPE_FIRMWARE,
  307. };
  308. static int sercomm_bootflag_value(struct mtd_info *mtd, uint8_t *buf)
  309. {
  310. size_t retlen;
  311. loff_t offs;
  312. int rc;
  313. for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
  314. rc = mtd_read(mtd, offs, SERCOMM_MAGIC_LEN, &retlen, buf);
  315. if (rc || retlen != SERCOMM_MAGIC_LEN)
  316. continue;
  317. if (memcmp(buf, SERCOMM_MAGIC_PFX, SERCOMM_MAGIC_PFX_LEN))
  318. continue;
  319. rc = char_to_num(buf[SERCOMM_MAGIC_PFX_LEN + 0]) * 100;
  320. rc += char_to_num(buf[SERCOMM_MAGIC_PFX_LEN + 1]) * 10;
  321. rc += char_to_num(buf[SERCOMM_MAGIC_PFX_LEN + 2]) * 1;
  322. return rc;
  323. }
  324. return -ENOENT;
  325. }
  326. static int mtdsplit_parse_ser_wfi(struct mtd_info *master,
  327. const struct mtd_partition **pparts,
  328. struct mtd_part_parser_data *data)
  329. {
  330. struct mtd_partition *parts;
  331. struct mtd_info *mtd_bf1, *mtd_bf2;
  332. loff_t img1_off = 0;
  333. loff_t img2_off = master->size / 2;
  334. loff_t img1_size = (img2_off - img1_off);
  335. loff_t img2_size = (master->size - img2_off);
  336. loff_t active_off, inactive_off;
  337. loff_t active_size, inactive_size;
  338. const char *inactive_name;
  339. uint8_t *buf;
  340. int bf1, bf2;
  341. int ret;
  342. mtd_bf1 = get_mtd_device_nm("bootflag1");
  343. if (IS_ERR(mtd_bf1))
  344. return -ENOENT;
  345. mtd_bf2 = get_mtd_device_nm("bootflag2");
  346. if (IS_ERR(mtd_bf2))
  347. return -ENOENT;
  348. buf = kzalloc(master->erasesize, GFP_KERNEL);
  349. if (!buf)
  350. return -ENOMEM;
  351. bf1 = sercomm_bootflag_value(mtd_bf1, buf);
  352. if (bf1 >= 0)
  353. printk("sercomm: bootflag1=%d\n", bf1);
  354. bf2 = sercomm_bootflag_value(mtd_bf2, buf);
  355. if (bf2 >= 0)
  356. printk("sercomm: bootflag2=%d\n", bf2);
  357. if (bf1 == bf2 && bf2 >= 0) {
  358. struct erase_info bf_erase;
  359. bf2 = -ENOENT;
  360. bf_erase.addr = 0;
  361. bf_erase.len = mtd_bf2->size;
  362. mtd_erase(mtd_bf2, &bf_erase);
  363. }
  364. if (bf1 >= bf2) {
  365. active_off = img1_off;
  366. active_size = img1_size;
  367. inactive_off = img2_off;
  368. inactive_size = img2_size;
  369. inactive_name = PART_IMAGE_2;
  370. } else {
  371. active_off = img2_off;
  372. active_size = img2_size;
  373. inactive_off = img1_off;
  374. inactive_size = img1_size;
  375. inactive_name = PART_IMAGE_1;
  376. }
  377. ret = parse_bcm_wfi(master, pparts, buf, active_off, active_size, false);
  378. kfree(buf);
  379. if (ret > 0) {
  380. parts = kzalloc((ret + 1) * sizeof(*parts), GFP_KERNEL);
  381. if (!parts)
  382. return -ENOMEM;
  383. memcpy(parts, *pparts, ret * sizeof(*parts));
  384. kfree(*pparts);
  385. parts[ret].name = inactive_name;
  386. parts[ret].offset = inactive_off;
  387. parts[ret].size = inactive_size;
  388. ret++;
  389. *pparts = parts;
  390. } else {
  391. parts = kzalloc(BCM_WFI_SPLIT_PARTS * sizeof(*parts), GFP_KERNEL);
  392. parts[0].name = PART_IMAGE_1;
  393. parts[0].offset = img1_off;
  394. parts[0].size = img1_size;
  395. parts[1].name = PART_IMAGE_2;
  396. parts[1].offset = img2_off;
  397. parts[1].size = img2_size;
  398. *pparts = parts;
  399. }
  400. return ret;
  401. }
  402. static const struct of_device_id mtdsplit_ser_wfi_of_match[] = {
  403. { .compatible = "sercomm,wfi" },
  404. { },
  405. };
  406. static struct mtd_part_parser mtdsplit_ser_wfi_parser = {
  407. .owner = THIS_MODULE,
  408. .name = "ser-wfi-fw",
  409. .of_match_table = mtdsplit_ser_wfi_of_match,
  410. .parse_fn = mtdsplit_parse_ser_wfi,
  411. .type = MTD_PARSER_TYPE_FIRMWARE,
  412. };
  413. static int __init mtdsplit_bcm_wfi_init(void)
  414. {
  415. register_mtd_parser(&mtdsplit_bcm_wfi_parser);
  416. register_mtd_parser(&mtdsplit_bcm_wfi_split_parser);
  417. register_mtd_parser(&mtdsplit_ser_wfi_parser);
  418. return 0;
  419. }
  420. module_init(mtdsplit_bcm_wfi_init);