rtl839x.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. #include <asm/mach-rtl838x/mach-rtl83xx.h>
  3. #include "rtl83xx.h"
  4. #define RTL839X_VLAN_PORT_TAG_STS_UNTAG 0x0
  5. #define RTL839X_VLAN_PORT_TAG_STS_TAGGED 0x1
  6. #define RTL839X_VLAN_PORT_TAG_STS_PRIORITY_TAGGED 0x2
  7. #define RTL839X_VLAN_PORT_TAG_STS_CTRL_BASE 0x6828
  8. /* port 0-52 */
  9. #define RTL839X_VLAN_PORT_TAG_STS_CTRL(port) \
  10. RTL839X_VLAN_PORT_TAG_STS_CTRL_BASE + (port << 2)
  11. #define RTL839X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK GENMASK(7,6)
  12. #define RTL839X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK GENMASK(5,4)
  13. #define RTL839X_VLAN_PORT_TAG_STS_CTRL_EGR_P_OTAG_KEEP_MASK GENMASK(3,3)
  14. #define RTL839X_VLAN_PORT_TAG_STS_CTRL_EGR_P_ITAG_KEEP_MASK GENMASK(2,2)
  15. #define RTL839X_VLAN_PORT_TAG_STS_CTRL_IGR_P_OTAG_KEEP_MASK GENMASK(1,1)
  16. #define RTL839X_VLAN_PORT_TAG_STS_CTRL_IGR_P_ITAG_KEEP_MASK GENMASK(0,0)
  17. extern struct mutex smi_lock;
  18. extern struct rtl83xx_soc_info soc_info;
  19. /* Definition of the RTL839X-specific template field IDs as used in the PIE */
  20. enum template_field_id {
  21. TEMPLATE_FIELD_SPMMASK = 0,
  22. TEMPLATE_FIELD_SPM0 = 1, // Source portmask ports 0-15
  23. TEMPLATE_FIELD_SPM1 = 2, // Source portmask ports 16-31
  24. TEMPLATE_FIELD_SPM2 = 3, // Source portmask ports 32-47
  25. TEMPLATE_FIELD_SPM3 = 4, // Source portmask ports 48-56
  26. TEMPLATE_FIELD_DMAC0 = 5, // Destination MAC [15:0]
  27. TEMPLATE_FIELD_DMAC1 = 6, // Destination MAC [31:16]
  28. TEMPLATE_FIELD_DMAC2 = 7, // Destination MAC [47:32]
  29. TEMPLATE_FIELD_SMAC0 = 8, // Source MAC [15:0]
  30. TEMPLATE_FIELD_SMAC1 = 9, // Source MAC [31:16]
  31. TEMPLATE_FIELD_SMAC2 = 10, // Source MAC [47:32]
  32. TEMPLATE_FIELD_ETHERTYPE = 11, // Ethernet frame type field
  33. // Field-ID 12 is not used
  34. TEMPLATE_FIELD_OTAG = 13,
  35. TEMPLATE_FIELD_ITAG = 14,
  36. TEMPLATE_FIELD_SIP0 = 15,
  37. TEMPLATE_FIELD_SIP1 = 16,
  38. TEMPLATE_FIELD_DIP0 = 17,
  39. TEMPLATE_FIELD_DIP1 = 18,
  40. TEMPLATE_FIELD_IP_TOS_PROTO = 19,
  41. TEMPLATE_FIELD_IP_FLAG = 20,
  42. TEMPLATE_FIELD_L4_SPORT = 21,
  43. TEMPLATE_FIELD_L4_DPORT = 22,
  44. TEMPLATE_FIELD_L34_HEADER = 23,
  45. TEMPLATE_FIELD_ICMP_IGMP = 24,
  46. TEMPLATE_FIELD_VID_RANG0 = 25,
  47. TEMPLATE_FIELD_VID_RANG1 = 26,
  48. TEMPLATE_FIELD_L4_PORT_RANG = 27,
  49. TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 28,
  50. TEMPLATE_FIELD_FIELD_SELECTOR_0 = 29,
  51. TEMPLATE_FIELD_FIELD_SELECTOR_1 = 30,
  52. TEMPLATE_FIELD_FIELD_SELECTOR_2 = 31,
  53. TEMPLATE_FIELD_FIELD_SELECTOR_3 = 32,
  54. TEMPLATE_FIELD_FIELD_SELECTOR_4 = 33,
  55. TEMPLATE_FIELD_FIELD_SELECTOR_5 = 34,
  56. TEMPLATE_FIELD_SIP2 = 35,
  57. TEMPLATE_FIELD_SIP3 = 36,
  58. TEMPLATE_FIELD_SIP4 = 37,
  59. TEMPLATE_FIELD_SIP5 = 38,
  60. TEMPLATE_FIELD_SIP6 = 39,
  61. TEMPLATE_FIELD_SIP7 = 40,
  62. TEMPLATE_FIELD_OLABEL = 41,
  63. TEMPLATE_FIELD_ILABEL = 42,
  64. TEMPLATE_FIELD_OILABEL = 43,
  65. TEMPLATE_FIELD_DPMMASK = 44,
  66. TEMPLATE_FIELD_DPM0 = 45,
  67. TEMPLATE_FIELD_DPM1 = 46,
  68. TEMPLATE_FIELD_DPM2 = 47,
  69. TEMPLATE_FIELD_DPM3 = 48,
  70. TEMPLATE_FIELD_L2DPM0 = 49,
  71. TEMPLATE_FIELD_L2DPM1 = 50,
  72. TEMPLATE_FIELD_L2DPM2 = 51,
  73. TEMPLATE_FIELD_L2DPM3 = 52,
  74. TEMPLATE_FIELD_IVLAN = 53,
  75. TEMPLATE_FIELD_OVLAN = 54,
  76. TEMPLATE_FIELD_FWD_VID = 55,
  77. TEMPLATE_FIELD_DIP2 = 56,
  78. TEMPLATE_FIELD_DIP3 = 57,
  79. TEMPLATE_FIELD_DIP4 = 58,
  80. TEMPLATE_FIELD_DIP5 = 59,
  81. TEMPLATE_FIELD_DIP6 = 60,
  82. TEMPLATE_FIELD_DIP7 = 61,
  83. };
  84. // Number of fixed templates predefined in the SoC
  85. #define N_FIXED_TEMPLATES 5
  86. static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] =
  87. {
  88. {
  89. TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_ITAG,
  90. TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2,
  91. TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
  92. TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3
  93. }, {
  94. TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
  95. TEMPLATE_FIELD_DIP1,TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_L4_SPORT,
  96. TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_SPM0,
  97. TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3
  98. }, {
  99. TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
  100. TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO,
  101. TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_SIP0,
  102. TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1
  103. }, {
  104. TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2,
  105. TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5,
  106. TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_L4_DPORT,
  107. TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_IP_TOS_PROTO
  108. }, {
  109. TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2,
  110. TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5,
  111. TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_SPM0,
  112. TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3
  113. },
  114. };
  115. void rtl839x_print_matrix(void)
  116. {
  117. volatile u64 *ptr9;
  118. int i;
  119. ptr9 = RTL838X_SW_BASE + RTL839X_PORT_ISO_CTRL(0);
  120. for (i = 0; i < 52; i += 4)
  121. pr_debug("> %16llx %16llx %16llx %16llx\n",
  122. ptr9[i + 0], ptr9[i + 1], ptr9[i + 2], ptr9[i + 3]);
  123. pr_debug("CPU_PORT> %16llx\n", ptr9[52]);
  124. }
  125. static inline int rtl839x_port_iso_ctrl(int p)
  126. {
  127. return RTL839X_PORT_ISO_CTRL(p);
  128. }
  129. static inline void rtl839x_exec_tbl0_cmd(u32 cmd)
  130. {
  131. sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_0);
  132. do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_0) & BIT(16));
  133. }
  134. static inline void rtl839x_exec_tbl1_cmd(u32 cmd)
  135. {
  136. sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_1);
  137. do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_1) & BIT(16));
  138. }
  139. inline void rtl839x_exec_tbl2_cmd(u32 cmd)
  140. {
  141. sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_2);
  142. do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_2) & (1 << 9));
  143. }
  144. static inline int rtl839x_tbl_access_data_0(int i)
  145. {
  146. return RTL839X_TBL_ACCESS_DATA_0(i);
  147. }
  148. static void rtl839x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
  149. {
  150. u32 u, v, w;
  151. // Read VLAN table (0) via register 0
  152. struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 0);
  153. rtl_table_read(r, vlan);
  154. u = sw_r32(rtl_table_data(r, 0));
  155. v = sw_r32(rtl_table_data(r, 1));
  156. w = sw_r32(rtl_table_data(r, 2));
  157. rtl_table_release(r);
  158. info->tagged_ports = u;
  159. info->tagged_ports = (info->tagged_ports << 21) | ((v >> 11) & 0x1fffff);
  160. info->profile_id = w >> 30 | ((v & 1) << 2);
  161. info->hash_mc_fid = !!(w & BIT(2));
  162. info->hash_uc_fid = !!(w & BIT(3));
  163. info->fid = (v >> 3) & 0xff;
  164. // Read UNTAG table (0) via table register 1
  165. r = rtl_table_get(RTL8390_TBL_1, 0);
  166. rtl_table_read(r, vlan);
  167. u = sw_r32(rtl_table_data(r, 0));
  168. v = sw_r32(rtl_table_data(r, 1));
  169. rtl_table_release(r);
  170. info->untagged_ports = u;
  171. info->untagged_ports = (info->untagged_ports << 21) | ((v >> 11) & 0x1fffff);
  172. }
  173. static void rtl839x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
  174. {
  175. u32 u, v, w;
  176. // Access VLAN table (0) via register 0
  177. struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 0);
  178. u = info->tagged_ports >> 21;
  179. v = info->tagged_ports << 11;
  180. v |= ((u32)info->fid) << 3;
  181. v |= info->hash_uc_fid ? BIT(2) : 0;
  182. v |= info->hash_mc_fid ? BIT(1) : 0;
  183. v |= (info->profile_id & 0x4) ? 1 : 0;
  184. w = ((u32)(info->profile_id & 3)) << 30;
  185. sw_w32(u, rtl_table_data(r, 0));
  186. sw_w32(v, rtl_table_data(r, 1));
  187. sw_w32(w, rtl_table_data(r, 2));
  188. rtl_table_write(r, vlan);
  189. rtl_table_release(r);
  190. }
  191. static void rtl839x_vlan_set_untagged(u32 vlan, u64 portmask)
  192. {
  193. u32 u, v;
  194. // Access UNTAG table (0) via table register 1
  195. struct table_reg *r = rtl_table_get(RTL8390_TBL_1, 0);
  196. u = portmask >> 21;
  197. v = portmask << 11;
  198. sw_w32(u, rtl_table_data(r, 0));
  199. sw_w32(v, rtl_table_data(r, 1));
  200. rtl_table_write(r, vlan);
  201. rtl_table_release(r);
  202. }
  203. /* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer
  204. */
  205. static void rtl839x_vlan_fwd_on_inner(int port, bool is_set)
  206. {
  207. if (is_set)
  208. rtl839x_mask_port_reg_be(BIT_ULL(port), 0ULL, RTL839X_VLAN_PORT_FWD);
  209. else
  210. rtl839x_mask_port_reg_be(0ULL, BIT_ULL(port), RTL839X_VLAN_PORT_FWD);
  211. }
  212. /*
  213. * Hash seed is vid (actually rvid) concatenated with the MAC address
  214. */
  215. static u64 rtl839x_l2_hash_seed(u64 mac, u32 vid)
  216. {
  217. u64 v = vid;
  218. v <<= 48;
  219. v |= mac;
  220. return v;
  221. }
  222. /*
  223. * Applies the same hash algorithm as the one used currently by the ASIC to the seed
  224. * and returns a key into the L2 hash table
  225. */
  226. static u32 rtl839x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
  227. {
  228. u32 h1, h2, h;
  229. if (sw_r32(priv->r->l2_ctrl_0) & 1) {
  230. h1 = (u32) (((seed >> 60) & 0x3f) ^ ((seed >> 54) & 0x3f)
  231. ^ ((seed >> 36) & 0x3f) ^ ((seed >> 30) & 0x3f)
  232. ^ ((seed >> 12) & 0x3f) ^ ((seed >> 6) & 0x3f));
  233. h2 = (u32) (((seed >> 48) & 0x3f) ^ ((seed >> 42) & 0x3f)
  234. ^ ((seed >> 24) & 0x3f) ^ ((seed >> 18) & 0x3f)
  235. ^ (seed & 0x3f));
  236. h = (h1 << 6) | h2;
  237. } else {
  238. h = (seed >> 60)
  239. ^ ((((seed >> 48) & 0x3f) << 6) | ((seed >> 54) & 0x3f))
  240. ^ ((seed >> 36) & 0xfff) ^ ((seed >> 24) & 0xfff)
  241. ^ ((seed >> 12) & 0xfff) ^ (seed & 0xfff);
  242. }
  243. return h;
  244. }
  245. static inline int rtl839x_mac_force_mode_ctrl(int p)
  246. {
  247. return RTL839X_MAC_FORCE_MODE_CTRL + (p << 2);
  248. }
  249. static inline int rtl839x_mac_port_ctrl(int p)
  250. {
  251. return RTL839X_MAC_PORT_CTRL(p);
  252. }
  253. static inline int rtl839x_l2_port_new_salrn(int p)
  254. {
  255. return RTL839X_L2_PORT_NEW_SALRN(p);
  256. }
  257. static inline int rtl839x_l2_port_new_sa_fwd(int p)
  258. {
  259. return RTL839X_L2_PORT_NEW_SA_FWD(p);
  260. }
  261. static inline int rtl839x_mac_link_spd_sts(int p)
  262. {
  263. return RTL839X_MAC_LINK_SPD_STS(p);
  264. }
  265. static inline int rtl839x_trk_mbr_ctr(int group)
  266. {
  267. return RTL839X_TRK_MBR_CTR + (group << 3);
  268. }
  269. static void rtl839x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
  270. {
  271. /* Table contains different entry types, we need to identify the right one:
  272. * Check for MC entries, first
  273. */
  274. e->is_ip_mc = !!(r[2] & BIT(31));
  275. e->is_ipv6_mc = !!(r[2] & BIT(30));
  276. e->type = L2_INVALID;
  277. if (!e->is_ip_mc && !e->is_ipv6_mc) {
  278. e->mac[0] = (r[0] >> 12);
  279. e->mac[1] = (r[0] >> 4);
  280. e->mac[2] = ((r[1] >> 28) | (r[0] << 4));
  281. e->mac[3] = (r[1] >> 20);
  282. e->mac[4] = (r[1] >> 12);
  283. e->mac[5] = (r[1] >> 4);
  284. e->vid = (r[2] >> 4) & 0xfff;
  285. e->rvid = (r[0] >> 20) & 0xfff;
  286. /* Is it a unicast entry? check multicast bit */
  287. if (!(e->mac[0] & 1)) {
  288. e->is_static = !!((r[2] >> 18) & 1);
  289. e->port = (r[2] >> 24) & 0x3f;
  290. e->block_da = !!(r[2] & (1 << 19));
  291. e->block_sa = !!(r[2] & (1 << 20));
  292. e->suspended = !!(r[2] & (1 << 17));
  293. e->next_hop = !!(r[2] & (1 << 16));
  294. if (e->next_hop) {
  295. pr_debug("Found next hop entry, need to read data\n");
  296. e->nh_vlan_target = !!(r[2] & BIT(15));
  297. e->nh_route_id = (r[2] >> 4) & 0x1ff;
  298. e->vid = e->rvid;
  299. }
  300. e->age = (r[2] >> 21) & 3;
  301. e->valid = true;
  302. if (!(r[2] & 0xc0fd0000)) /* Check for valid entry */
  303. e->valid = false;
  304. else
  305. e->type = L2_UNICAST;
  306. } else {
  307. e->valid = true;
  308. e->type = L2_MULTICAST;
  309. e->mc_portmask_index = (r[2] >> 6) & 0xfff;
  310. e->vid = e->rvid;
  311. }
  312. } else { // IPv4 and IPv6 multicast
  313. e->vid = e->rvid = (r[0] << 20) & 0xfff;
  314. e->mc_gip = r[1];
  315. e->mc_portmask_index = (r[2] >> 6) & 0xfff;
  316. }
  317. if (e->is_ip_mc) {
  318. e->valid = true;
  319. e->type = IP4_MULTICAST;
  320. }
  321. if (e->is_ipv6_mc) {
  322. e->valid = true;
  323. e->type = IP6_MULTICAST;
  324. }
  325. // pr_info("%s: vid %d, rvid: %d\n", __func__, e->vid, e->rvid);
  326. }
  327. /*
  328. * Fills the 3 SoC table registers r[] with the information in the rtl838x_l2_entry
  329. */
  330. static void rtl839x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
  331. {
  332. if (!e->valid) {
  333. r[0] = r[1] = r[2] = 0;
  334. return;
  335. }
  336. r[2] = e->is_ip_mc ? BIT(31) : 0;
  337. r[2] |= e->is_ipv6_mc ? BIT(30) : 0;
  338. if (!e->is_ip_mc && !e->is_ipv6_mc) {
  339. r[0] = ((u32)e->mac[0]) << 12;
  340. r[0] |= ((u32)e->mac[1]) << 4;
  341. r[0] |= ((u32)e->mac[2]) >> 4;
  342. r[1] = ((u32)e->mac[2]) << 28;
  343. r[1] |= ((u32)e->mac[3]) << 20;
  344. r[1] |= ((u32)e->mac[4]) << 12;
  345. r[1] |= ((u32)e->mac[5]) << 4;
  346. if (!(e->mac[0] & 1)) { // Not multicast
  347. r[2] |= e->is_static ? BIT(18) : 0;
  348. r[0] |= ((u32)e->rvid) << 20;
  349. r[2] |= e->port << 24;
  350. r[2] |= e->block_da ? BIT(19) : 0;
  351. r[2] |= e->block_sa ? BIT(20) : 0;
  352. r[2] |= e->suspended ? BIT(17) : 0;
  353. r[2] |= ((u32)e->age) << 21;
  354. if (e->next_hop) {
  355. r[2] |= BIT(16);
  356. r[2] |= e->nh_vlan_target ? BIT(15) : 0;
  357. r[2] |= (e->nh_route_id & 0x7ff) << 4;
  358. } else {
  359. r[2] |= e->vid << 4;
  360. }
  361. pr_debug("Write L2 NH: %08x %08x %08x\n", r[0], r[1], r[2]);
  362. } else { // L2 Multicast
  363. r[0] |= ((u32)e->rvid) << 20;
  364. r[2] |= ((u32)e->mc_portmask_index) << 6;
  365. }
  366. } else { // IPv4 or IPv6 MC entry
  367. r[0] = ((u32)e->rvid) << 20;
  368. r[1] = e->mc_gip;
  369. r[2] |= ((u32)e->mc_portmask_index) << 6;
  370. }
  371. }
  372. /*
  373. * Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
  374. * hash is the id of the bucket and pos is the position of the entry in that bucket
  375. * The data read from the SoC is filled into rtl838x_l2_entry
  376. */
  377. static u64 rtl839x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
  378. {
  379. u32 r[3];
  380. struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 0);
  381. u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
  382. int i;
  383. rtl_table_read(q, idx);
  384. for (i= 0; i < 3; i++)
  385. r[i] = sw_r32(rtl_table_data(q, i));
  386. rtl_table_release(q);
  387. rtl839x_fill_l2_entry(r, e);
  388. if (!e->valid)
  389. return 0;
  390. return rtl839x_l2_hash_seed(ether_addr_to_u64(&e->mac[0]), e->rvid);
  391. }
  392. static void rtl839x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
  393. {
  394. u32 r[3];
  395. struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 0);
  396. int i;
  397. u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
  398. rtl839x_fill_l2_row(r, e);
  399. for (i= 0; i < 3; i++)
  400. sw_w32(r[i], rtl_table_data(q, i));
  401. rtl_table_write(q, idx);
  402. rtl_table_release(q);
  403. }
  404. static u64 rtl839x_read_cam(int idx, struct rtl838x_l2_entry *e)
  405. {
  406. u32 r[3];
  407. struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 1); // Access L2 Table 1
  408. int i;
  409. rtl_table_read(q, idx);
  410. for (i= 0; i < 3; i++)
  411. r[i] = sw_r32(rtl_table_data(q, i));
  412. rtl_table_release(q);
  413. rtl839x_fill_l2_entry(r, e);
  414. if (!e->valid)
  415. return 0;
  416. pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
  417. // Return MAC with concatenated VID ac concatenated ID
  418. return rtl839x_l2_hash_seed(ether_addr_to_u64(&e->mac[0]), e->rvid);
  419. }
  420. static void rtl839x_write_cam(int idx, struct rtl838x_l2_entry *e)
  421. {
  422. u32 r[3];
  423. struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 1); // Access L2 Table 1
  424. int i;
  425. rtl839x_fill_l2_row(r, e);
  426. for (i= 0; i < 3; i++)
  427. sw_w32(r[i], rtl_table_data(q, i));
  428. rtl_table_write(q, idx);
  429. rtl_table_release(q);
  430. }
  431. static u64 rtl839x_read_mcast_pmask(int idx)
  432. {
  433. u64 portmask;
  434. // Read MC_PMSK (2) via register RTL8390_TBL_L2
  435. struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 2);
  436. rtl_table_read(q, idx);
  437. portmask = sw_r32(rtl_table_data(q, 0));
  438. portmask <<= 32;
  439. portmask |= sw_r32(rtl_table_data(q, 1));
  440. portmask >>= 11; // LSB is bit 11 in data registers
  441. rtl_table_release(q);
  442. return portmask;
  443. }
  444. static void rtl839x_write_mcast_pmask(int idx, u64 portmask)
  445. {
  446. // Access MC_PMSK (2) via register RTL8380_TBL_L2
  447. struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 2);
  448. portmask <<= 11; // LSB is bit 11 in data registers
  449. sw_w32((u32)(portmask >> 32), rtl_table_data(q, 0));
  450. sw_w32((u32)((portmask & 0xfffff800)), rtl_table_data(q, 1));
  451. rtl_table_write(q, idx);
  452. rtl_table_release(q);
  453. }
  454. static void rtl839x_vlan_profile_setup(int profile)
  455. {
  456. u32 p[2];
  457. u32 pmask_id = UNKNOWN_MC_PMASK;
  458. p[0] = pmask_id; // Use portmaks 0xfff for unknown IPv6 MC flooding
  459. // Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for IP/L2-MC traffic flooding
  460. p[1] = 1 | pmask_id << 1 | pmask_id << 13;
  461. sw_w32(p[0], RTL839X_VLAN_PROFILE(profile));
  462. sw_w32(p[1], RTL839X_VLAN_PROFILE(profile) + 4);
  463. rtl839x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x001fffffffffffff);
  464. }
  465. u64 rtl839x_traffic_get(int source)
  466. {
  467. return rtl839x_get_port_reg_be(rtl839x_port_iso_ctrl(source));
  468. }
  469. void rtl839x_traffic_set(int source, u64 dest_matrix)
  470. {
  471. rtl839x_set_port_reg_be(dest_matrix, rtl839x_port_iso_ctrl(source));
  472. }
  473. void rtl839x_traffic_enable(int source, int dest)
  474. {
  475. rtl839x_mask_port_reg_be(0, BIT_ULL(dest), rtl839x_port_iso_ctrl(source));
  476. }
  477. void rtl839x_traffic_disable(int source, int dest)
  478. {
  479. rtl839x_mask_port_reg_be(BIT_ULL(dest), 0, rtl839x_port_iso_ctrl(source));
  480. }
  481. static void rtl839x_l2_learning_setup(void)
  482. {
  483. /* Set portmask for broadcast (offset bit 12) and unknown unicast (offset 0)
  484. * address flooding to the reserved entry in the portmask table used
  485. * also for multicast flooding */
  486. sw_w32(UNKNOWN_MC_PMASK << 12 | UNKNOWN_MC_PMASK, RTL839X_L2_FLD_PMSK);
  487. // Limit learning to maximum: 32k entries, after that just flood (bits 0-1)
  488. sw_w32((0x7fff << 2) | 0, RTL839X_L2_LRN_CONSTRT);
  489. // Do not trap ARP packets to CPU_PORT
  490. sw_w32(0, RTL839X_SPCL_TRAP_ARP_CTRL);
  491. }
  492. static void rtl839x_enable_learning(int port, bool enable)
  493. {
  494. // Limit learning to maximum: 32k entries
  495. sw_w32_mask(0x7fff << 2, enable ? (0x7fff << 2) : 0,
  496. RTL839X_L2_PORT_LRN_CONSTRT + (port << 2));
  497. }
  498. static void rtl839x_enable_flood(int port, bool enable)
  499. {
  500. /*
  501. * 0: Forward
  502. * 1: Disable
  503. * 2: to CPU
  504. * 3: Copy to CPU
  505. */
  506. sw_w32_mask(0x3, enable ? 0 : 1,
  507. RTL839X_L2_PORT_LRN_CONSTRT + (port << 2));
  508. }
  509. static void rtl839x_enable_mcast_flood(int port, bool enable)
  510. {
  511. }
  512. static void rtl839x_enable_bcast_flood(int port, bool enable)
  513. {
  514. }
  515. irqreturn_t rtl839x_switch_irq(int irq, void *dev_id)
  516. {
  517. struct dsa_switch *ds = dev_id;
  518. u32 status = sw_r32(RTL839X_ISR_GLB_SRC);
  519. u64 ports = rtl839x_get_port_reg_le(RTL839X_ISR_PORT_LINK_STS_CHG);
  520. u64 link;
  521. int i;
  522. /* Clear status */
  523. rtl839x_set_port_reg_le(ports, RTL839X_ISR_PORT_LINK_STS_CHG);
  524. pr_debug("RTL8390 Link change: status: %x, ports %llx\n", status, ports);
  525. for (i = 0; i < RTL839X_CPU_PORT; i++) {
  526. if (ports & BIT_ULL(i)) {
  527. link = rtl839x_get_port_reg_le(RTL839X_MAC_LINK_STS);
  528. if (link & BIT_ULL(i))
  529. dsa_port_phylink_mac_change(ds, i, true);
  530. else
  531. dsa_port_phylink_mac_change(ds, i, false);
  532. }
  533. }
  534. return IRQ_HANDLED;
  535. }
  536. // TODO: unused
  537. int rtl8390_sds_power(int mac, int val)
  538. {
  539. u32 offset = (mac == 48) ? 0x0 : 0x100;
  540. u32 mode = val ? 0 : 1;
  541. pr_debug("In %s: mac %d, set %d\n", __func__, mac, val);
  542. if ((mac != 48) && (mac != 49)) {
  543. pr_err("%s: not an SFP port: %d\n", __func__, mac);
  544. return -1;
  545. }
  546. // Set bit 1003. 1000 starts at 7c
  547. sw_w32_mask(BIT(11), mode << 11, RTL839X_SDS12_13_PWR0 + offset);
  548. return 0;
  549. }
  550. static int rtl839x_smi_wait_op(int timeout)
  551. {
  552. int ret = 0;
  553. u32 val;
  554. ret = readx_poll_timeout(sw_r32, RTL839X_PHYREG_ACCESS_CTRL,
  555. val, !(val & 0x1), 20, timeout);
  556. if (ret)
  557. pr_err("%s: timeout\n", __func__);
  558. return ret;
  559. }
  560. int rtl839x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
  561. {
  562. u32 v;
  563. int err = 0;
  564. if (port > 63 || page > 4095 || reg > 31)
  565. return -ENOTSUPP;
  566. // Take bug on RTL839x Rev <= C into account
  567. if (port >= RTL839X_CPU_PORT)
  568. return -EIO;
  569. mutex_lock(&smi_lock);
  570. sw_w32_mask(0xffff0000, port << 16, RTL839X_PHYREG_DATA_CTRL);
  571. v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23;
  572. sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
  573. sw_w32(0x1ff, RTL839X_PHYREG_CTRL);
  574. v |= 1;
  575. sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
  576. err = rtl839x_smi_wait_op(100000);
  577. if (err)
  578. goto errout;
  579. *val = sw_r32(RTL839X_PHYREG_DATA_CTRL) & 0xffff;
  580. errout:
  581. mutex_unlock(&smi_lock);
  582. return err;
  583. }
  584. int rtl839x_write_phy(u32 port, u32 page, u32 reg, u32 val)
  585. {
  586. u32 v;
  587. int err = 0;
  588. val &= 0xffff;
  589. if (port > 63 || page > 4095 || reg > 31)
  590. return -ENOTSUPP;
  591. // Take bug on RTL839x Rev <= C into account
  592. if (port >= RTL839X_CPU_PORT)
  593. return -EIO;
  594. mutex_lock(&smi_lock);
  595. // Set PHY to access
  596. rtl839x_set_port_reg_le(BIT_ULL(port), RTL839X_PHYREG_PORT_CTRL);
  597. sw_w32_mask(0xffff0000, val << 16, RTL839X_PHYREG_DATA_CTRL);
  598. v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23;
  599. sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
  600. sw_w32(0x1ff, RTL839X_PHYREG_CTRL);
  601. v |= BIT(3) | 1; /* Write operation and execute */
  602. sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
  603. err = rtl839x_smi_wait_op(100000);
  604. if (err)
  605. goto errout;
  606. if (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x2)
  607. err = -EIO;
  608. errout:
  609. mutex_unlock(&smi_lock);
  610. return err;
  611. }
  612. /*
  613. * Read an mmd register of the PHY
  614. */
  615. int rtl839x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val)
  616. {
  617. int err = 0;
  618. u32 v;
  619. // Take bug on RTL839x Rev <= C into account
  620. if (port >= RTL839X_CPU_PORT)
  621. return -EIO;
  622. mutex_lock(&smi_lock);
  623. // Set PHY to access
  624. sw_w32_mask(0xffff << 16, port << 16, RTL839X_PHYREG_DATA_CTRL);
  625. // Set MMD device number and register to write to
  626. sw_w32(devnum << 16 | (regnum & 0xffff), RTL839X_PHYREG_MMD_CTRL);
  627. v = BIT(2) | BIT(0); // MMD-access | EXEC
  628. sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
  629. err = rtl839x_smi_wait_op(100000);
  630. if (err)
  631. goto errout;
  632. // There is no error-checking via BIT 1 of v, as it does not seem to be set correctly
  633. *val = (sw_r32(RTL839X_PHYREG_DATA_CTRL) & 0xffff);
  634. pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, *val, err);
  635. errout:
  636. mutex_unlock(&smi_lock);
  637. return err;
  638. }
  639. /*
  640. * Write to an mmd register of the PHY
  641. */
  642. int rtl839x_write_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 val)
  643. {
  644. int err = 0;
  645. u32 v;
  646. // Take bug on RTL839x Rev <= C into account
  647. if (port >= RTL839X_CPU_PORT)
  648. return -EIO;
  649. mutex_lock(&smi_lock);
  650. // Set PHY to access
  651. rtl839x_set_port_reg_le(BIT_ULL(port), RTL839X_PHYREG_PORT_CTRL);
  652. // Set data to write
  653. sw_w32_mask(0xffff << 16, val << 16, RTL839X_PHYREG_DATA_CTRL);
  654. // Set MMD device number and register to write to
  655. sw_w32(devnum << 16 | (regnum & 0xffff), RTL839X_PHYREG_MMD_CTRL);
  656. v = BIT(3) | BIT(2) | BIT(0); // WRITE | MMD-access | EXEC
  657. sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
  658. err = rtl839x_smi_wait_op(100000);
  659. if (err)
  660. goto errout;
  661. pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, val, err);
  662. errout:
  663. mutex_unlock(&smi_lock);
  664. return err;
  665. }
  666. void rtl8390_get_version(struct rtl838x_switch_priv *priv)
  667. {
  668. u32 info, model;
  669. sw_w32_mask(0xf << 28, 0xa << 28, RTL839X_CHIP_INFO);
  670. info = sw_r32(RTL839X_CHIP_INFO);
  671. model = sw_r32(RTL839X_MODEL_NAME_INFO);
  672. priv->version = RTL8390_VERSION_A + ((model & 0x3f) >> 1);
  673. pr_info("RTL839X Chip-Info: %x, version %c\n", info, priv->version);
  674. }
  675. void rtl839x_vlan_profile_dump(int profile)
  676. {
  677. u32 p[2];
  678. if (profile < 0 || profile > 7)
  679. return;
  680. p[0] = sw_r32(RTL839X_VLAN_PROFILE(profile));
  681. p[1] = sw_r32(RTL839X_VLAN_PROFILE(profile) + 4);
  682. pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \
  683. UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d",
  684. profile, p[1] & 1, (p[1] >> 1) & 0xfff, (p[1] >> 13) & 0xfff,
  685. (p[0]) & 0xfff);
  686. pr_info("VLAN profile %d: raw %08x, %08x\n", profile, p[0], p[1]);
  687. }
  688. static void rtl839x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
  689. {
  690. int i;
  691. u32 cmd = 1 << 16 /* Execute cmd */
  692. | 0 << 15 /* Read */
  693. | 5 << 12 /* Table type 0b101 */
  694. | (msti & 0xfff);
  695. priv->r->exec_tbl0_cmd(cmd);
  696. for (i = 0; i < 4; i++)
  697. port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
  698. }
  699. static void rtl839x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
  700. {
  701. int i;
  702. u32 cmd = 1 << 16 /* Execute cmd */
  703. | 1 << 15 /* Write */
  704. | 5 << 12 /* Table type 0b101 */
  705. | (msti & 0xfff);
  706. for (i = 0; i < 4; i++)
  707. sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
  708. priv->r->exec_tbl0_cmd(cmd);
  709. }
  710. /*
  711. * Enables or disables the EEE/EEEP capability of a port
  712. */
  713. void rtl839x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable)
  714. {
  715. u32 v;
  716. // This works only for Ethernet ports, and on the RTL839X, ports above 47 are SFP
  717. if (port >= 48)
  718. return;
  719. enable = true;
  720. pr_debug("In %s: setting port %d to %d\n", __func__, port, enable);
  721. v = enable ? 0xf : 0x0;
  722. // Set EEE for 100, 500, 1000MBit and 10GBit
  723. sw_w32_mask(0xf << 8, v << 8, rtl839x_mac_force_mode_ctrl(port));
  724. // Set TX/RX EEE state
  725. v = enable ? 0x3 : 0x0;
  726. sw_w32(v, RTL839X_EEE_CTRL(port));
  727. priv->ports[port].eee_enabled = enable;
  728. }
  729. /*
  730. * Get EEE own capabilities and negotiation result
  731. */
  732. int rtl839x_eee_port_ability(struct rtl838x_switch_priv *priv, struct ethtool_eee *e, int port)
  733. {
  734. u64 link, a;
  735. if (port >= 48)
  736. return 0;
  737. link = rtl839x_get_port_reg_le(RTL839X_MAC_LINK_STS);
  738. if (!(link & BIT_ULL(port)))
  739. return 0;
  740. if (sw_r32(rtl839x_mac_force_mode_ctrl(port)) & BIT(8))
  741. e->advertised |= ADVERTISED_100baseT_Full;
  742. if (sw_r32(rtl839x_mac_force_mode_ctrl(port)) & BIT(10))
  743. e->advertised |= ADVERTISED_1000baseT_Full;
  744. a = rtl839x_get_port_reg_le(RTL839X_MAC_EEE_ABLTY);
  745. pr_info("Link partner: %016llx\n", a);
  746. if (rtl839x_get_port_reg_le(RTL839X_MAC_EEE_ABLTY) & BIT_ULL(port)) {
  747. e->lp_advertised = ADVERTISED_100baseT_Full;
  748. e->lp_advertised |= ADVERTISED_1000baseT_Full;
  749. return 1;
  750. }
  751. return 0;
  752. }
  753. static void rtl839x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
  754. {
  755. int i;
  756. pr_info("Setting up EEE, state: %d\n", enable);
  757. // Set wake timer for TX and pause timer both to 0x21
  758. sw_w32_mask(0xff << 20| 0xff, 0x21 << 20| 0x21, RTL839X_EEE_TX_TIMER_GELITE_CTRL);
  759. // Set pause wake timer for GIGA-EEE to 0x11
  760. sw_w32_mask(0xff << 20, 0x11 << 20, RTL839X_EEE_TX_TIMER_GIGA_CTRL);
  761. // Set pause wake timer for 10GBit ports to 0x11
  762. sw_w32_mask(0xff << 20, 0x11 << 20, RTL839X_EEE_TX_TIMER_10G_CTRL);
  763. // Setup EEE on all ports
  764. for (i = 0; i < priv->cpu_port; i++) {
  765. if (priv->ports[i].phy)
  766. rtl839x_port_eee_set(priv, i, enable);
  767. }
  768. priv->eee_enabled = enable;
  769. }
  770. static void rtl839x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
  771. {
  772. int block = index / PIE_BLOCK_SIZE;
  773. sw_w32_mask(0, BIT(block), RTL839X_ACL_BLK_LOOKUP_CTRL);
  774. }
  775. /*
  776. * Delete a range of Packet Inspection Engine rules
  777. */
  778. static int rtl839x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to)
  779. {
  780. u32 v = (index_from << 1)| (index_to << 13 ) | BIT(0);
  781. pr_debug("%s: from %d to %d\n", __func__, index_from, index_to);
  782. mutex_lock(&priv->reg_mutex);
  783. // Write from-to and execute bit into control register
  784. sw_w32(v, RTL839X_ACL_CLR_CTRL);
  785. // Wait until command has completed
  786. do {
  787. } while (sw_r32(RTL839X_ACL_CLR_CTRL) & BIT(0));
  788. mutex_unlock(&priv->reg_mutex);
  789. return 0;
  790. }
  791. /*
  792. * Reads the intermediate representation of the templated match-fields of the
  793. * PIE rule in the pie_rule structure and fills in the raw data fields in the
  794. * raw register space r[].
  795. * The register space configuration size is identical for the RTL8380/90 and RTL9300,
  796. * however the RTL9310 has 2 more registers / fields and the physical field-ids are different
  797. * on all SoCs
  798. * On the RTL8390 the template mask registers are not word-aligned!
  799. */
  800. static void rtl839x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
  801. {
  802. int i;
  803. enum template_field_id field_type;
  804. u16 data, data_m;
  805. for (i = 0; i < N_FIXED_FIELDS; i++) {
  806. field_type = t[i];
  807. data = data_m = 0;
  808. switch (field_type) {
  809. case TEMPLATE_FIELD_SPM0:
  810. data = pr->spm;
  811. data_m = pr->spm_m;
  812. break;
  813. case TEMPLATE_FIELD_SPM1:
  814. data = pr->spm >> 16;
  815. data_m = pr->spm_m >> 16;
  816. break;
  817. case TEMPLATE_FIELD_SPM2:
  818. data = pr->spm >> 32;
  819. data_m = pr->spm_m >> 32;
  820. break;
  821. case TEMPLATE_FIELD_SPM3:
  822. data = pr->spm >> 48;
  823. data_m = pr->spm_m >> 48;
  824. break;
  825. case TEMPLATE_FIELD_OTAG:
  826. data = pr->otag;
  827. data_m = pr->otag_m;
  828. break;
  829. case TEMPLATE_FIELD_SMAC0:
  830. data = pr->smac[4];
  831. data = (data << 8) | pr->smac[5];
  832. data_m = pr->smac_m[4];
  833. data_m = (data_m << 8) | pr->smac_m[5];
  834. break;
  835. case TEMPLATE_FIELD_SMAC1:
  836. data = pr->smac[2];
  837. data = (data << 8) | pr->smac[3];
  838. data_m = pr->smac_m[2];
  839. data_m = (data_m << 8) | pr->smac_m[3];
  840. break;
  841. case TEMPLATE_FIELD_SMAC2:
  842. data = pr->smac[0];
  843. data = (data << 8) | pr->smac[1];
  844. data_m = pr->smac_m[0];
  845. data_m = (data_m << 8) | pr->smac_m[1];
  846. break;
  847. case TEMPLATE_FIELD_DMAC0:
  848. data = pr->dmac[4];
  849. data = (data << 8) | pr->dmac[5];
  850. data_m = pr->dmac_m[4];
  851. data_m = (data_m << 8) | pr->dmac_m[5];
  852. break;
  853. case TEMPLATE_FIELD_DMAC1:
  854. data = pr->dmac[2];
  855. data = (data << 8) | pr->dmac[3];
  856. data_m = pr->dmac_m[2];
  857. data_m = (data_m << 8) | pr->dmac_m[3];
  858. break;
  859. case TEMPLATE_FIELD_DMAC2:
  860. data = pr->dmac[0];
  861. data = (data << 8) | pr->dmac[1];
  862. data_m = pr->dmac_m[0];
  863. data_m = (data_m << 8) | pr->dmac_m[1];
  864. break;
  865. case TEMPLATE_FIELD_ETHERTYPE:
  866. data = pr->ethertype;
  867. data_m = pr->ethertype_m;
  868. break;
  869. case TEMPLATE_FIELD_ITAG:
  870. data = pr->itag;
  871. data_m = pr->itag_m;
  872. break;
  873. case TEMPLATE_FIELD_SIP0:
  874. if (pr->is_ipv6) {
  875. data = pr->sip6.s6_addr16[7];
  876. data_m = pr->sip6_m.s6_addr16[7];
  877. } else {
  878. data = pr->sip;
  879. data_m = pr->sip_m;
  880. }
  881. break;
  882. case TEMPLATE_FIELD_SIP1:
  883. if (pr->is_ipv6) {
  884. data = pr->sip6.s6_addr16[6];
  885. data_m = pr->sip6_m.s6_addr16[6];
  886. } else {
  887. data = pr->sip >> 16;
  888. data_m = pr->sip_m >> 16;
  889. }
  890. break;
  891. case TEMPLATE_FIELD_SIP2:
  892. case TEMPLATE_FIELD_SIP3:
  893. case TEMPLATE_FIELD_SIP4:
  894. case TEMPLATE_FIELD_SIP5:
  895. case TEMPLATE_FIELD_SIP6:
  896. case TEMPLATE_FIELD_SIP7:
  897. data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
  898. data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
  899. break;
  900. case TEMPLATE_FIELD_DIP0:
  901. if (pr->is_ipv6) {
  902. data = pr->dip6.s6_addr16[7];
  903. data_m = pr->dip6_m.s6_addr16[7];
  904. } else {
  905. data = pr->dip;
  906. data_m = pr->dip_m;
  907. }
  908. break;
  909. case TEMPLATE_FIELD_DIP1:
  910. if (pr->is_ipv6) {
  911. data = pr->dip6.s6_addr16[6];
  912. data_m = pr->dip6_m.s6_addr16[6];
  913. } else {
  914. data = pr->dip >> 16;
  915. data_m = pr->dip_m >> 16;
  916. }
  917. break;
  918. case TEMPLATE_FIELD_DIP2:
  919. case TEMPLATE_FIELD_DIP3:
  920. case TEMPLATE_FIELD_DIP4:
  921. case TEMPLATE_FIELD_DIP5:
  922. case TEMPLATE_FIELD_DIP6:
  923. case TEMPLATE_FIELD_DIP7:
  924. data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
  925. data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
  926. break;
  927. case TEMPLATE_FIELD_IP_TOS_PROTO:
  928. data = pr->tos_proto;
  929. data_m = pr->tos_proto_m;
  930. break;
  931. case TEMPLATE_FIELD_L4_SPORT:
  932. data = pr->sport;
  933. data_m = pr->sport_m;
  934. break;
  935. case TEMPLATE_FIELD_L4_DPORT:
  936. data = pr->dport;
  937. data_m = pr->dport_m;
  938. break;
  939. case TEMPLATE_FIELD_ICMP_IGMP:
  940. data = pr->icmp_igmp;
  941. data_m = pr->icmp_igmp_m;
  942. break;
  943. default:
  944. pr_info("%s: unknown field %d\n", __func__, field_type);
  945. }
  946. // On the RTL8390, the mask fields are not word aligned!
  947. if (!(i % 2)) {
  948. r[5 - i / 2] = data;
  949. r[12 - i / 2] |= ((u32)data_m << 8);
  950. } else {
  951. r[5 - i / 2] |= ((u32)data) << 16;
  952. r[12 - i / 2] |= ((u32)data_m) << 24;
  953. r[11 - i / 2] |= ((u32)data_m) >> 8;
  954. }
  955. }
  956. }
  957. /*
  958. * Creates the intermediate representation of the templated match-fields of the
  959. * PIE rule in the pie_rule structure by reading the raw data fields in the
  960. * raw register space r[].
  961. * The register space configuration size is identical for the RTL8380/90 and RTL9300,
  962. * however the RTL9310 has 2 more registers / fields and the physical field-ids
  963. * On the RTL8390 the template mask registers are not word-aligned!
  964. */
  965. void rtl839x_read_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
  966. {
  967. int i;
  968. enum template_field_id field_type;
  969. u16 data, data_m;
  970. for (i = 0; i < N_FIXED_FIELDS; i++) {
  971. field_type = t[i];
  972. if (!(i % 2)) {
  973. data = r[5 - i / 2];
  974. data_m = r[12 - i / 2];
  975. } else {
  976. data = r[5 - i / 2] >> 16;
  977. data_m = r[12 - i / 2] >> 16;
  978. }
  979. switch (field_type) {
  980. case TEMPLATE_FIELD_SPM0:
  981. pr->spm = (pr->spn << 16) | data;
  982. pr->spm_m = (pr->spn << 16) | data_m;
  983. break;
  984. case TEMPLATE_FIELD_SPM1:
  985. pr->spm = data;
  986. pr->spm_m = data_m;
  987. break;
  988. case TEMPLATE_FIELD_OTAG:
  989. pr->otag = data;
  990. pr->otag_m = data_m;
  991. break;
  992. case TEMPLATE_FIELD_SMAC0:
  993. pr->smac[4] = data >> 8;
  994. pr->smac[5] = data;
  995. pr->smac_m[4] = data >> 8;
  996. pr->smac_m[5] = data;
  997. break;
  998. case TEMPLATE_FIELD_SMAC1:
  999. pr->smac[2] = data >> 8;
  1000. pr->smac[3] = data;
  1001. pr->smac_m[2] = data >> 8;
  1002. pr->smac_m[3] = data;
  1003. break;
  1004. case TEMPLATE_FIELD_SMAC2:
  1005. pr->smac[0] = data >> 8;
  1006. pr->smac[1] = data;
  1007. pr->smac_m[0] = data >> 8;
  1008. pr->smac_m[1] = data;
  1009. break;
  1010. case TEMPLATE_FIELD_DMAC0:
  1011. pr->dmac[4] = data >> 8;
  1012. pr->dmac[5] = data;
  1013. pr->dmac_m[4] = data >> 8;
  1014. pr->dmac_m[5] = data;
  1015. break;
  1016. case TEMPLATE_FIELD_DMAC1:
  1017. pr->dmac[2] = data >> 8;
  1018. pr->dmac[3] = data;
  1019. pr->dmac_m[2] = data >> 8;
  1020. pr->dmac_m[3] = data;
  1021. break;
  1022. case TEMPLATE_FIELD_DMAC2:
  1023. pr->dmac[0] = data >> 8;
  1024. pr->dmac[1] = data;
  1025. pr->dmac_m[0] = data >> 8;
  1026. pr->dmac_m[1] = data;
  1027. break;
  1028. case TEMPLATE_FIELD_ETHERTYPE:
  1029. pr->ethertype = data;
  1030. pr->ethertype_m = data_m;
  1031. break;
  1032. case TEMPLATE_FIELD_ITAG:
  1033. pr->itag = data;
  1034. pr->itag_m = data_m;
  1035. break;
  1036. case TEMPLATE_FIELD_SIP0:
  1037. pr->sip = data;
  1038. pr->sip_m = data_m;
  1039. break;
  1040. case TEMPLATE_FIELD_SIP1:
  1041. pr->sip = (pr->sip << 16) | data;
  1042. pr->sip_m = (pr->sip << 16) | data_m;
  1043. break;
  1044. case TEMPLATE_FIELD_SIP2:
  1045. pr->is_ipv6 = true;
  1046. // Make use of limitiations on the position of the match values
  1047. ipv6_addr_set(&pr->sip6, pr->sip, r[5 - i / 2],
  1048. r[4 - i / 2], r[3 - i / 2]);
  1049. ipv6_addr_set(&pr->sip6_m, pr->sip_m, r[5 - i / 2],
  1050. r[4 - i / 2], r[3 - i / 2]);
  1051. case TEMPLATE_FIELD_SIP3:
  1052. case TEMPLATE_FIELD_SIP4:
  1053. case TEMPLATE_FIELD_SIP5:
  1054. case TEMPLATE_FIELD_SIP6:
  1055. case TEMPLATE_FIELD_SIP7:
  1056. break;
  1057. case TEMPLATE_FIELD_DIP0:
  1058. pr->dip = data;
  1059. pr->dip_m = data_m;
  1060. break;
  1061. case TEMPLATE_FIELD_DIP1:
  1062. pr->dip = (pr->dip << 16) | data;
  1063. pr->dip_m = (pr->dip << 16) | data_m;
  1064. break;
  1065. case TEMPLATE_FIELD_DIP2:
  1066. pr->is_ipv6 = true;
  1067. ipv6_addr_set(&pr->dip6, pr->dip, r[5 - i / 2],
  1068. r[4 - i / 2], r[3 - i / 2]);
  1069. ipv6_addr_set(&pr->dip6_m, pr->dip_m, r[5 - i / 2],
  1070. r[4 - i / 2], r[3 - i / 2]);
  1071. case TEMPLATE_FIELD_DIP3:
  1072. case TEMPLATE_FIELD_DIP4:
  1073. case TEMPLATE_FIELD_DIP5:
  1074. case TEMPLATE_FIELD_DIP6:
  1075. case TEMPLATE_FIELD_DIP7:
  1076. break;
  1077. case TEMPLATE_FIELD_IP_TOS_PROTO:
  1078. pr->tos_proto = data;
  1079. pr->tos_proto_m = data_m;
  1080. break;
  1081. case TEMPLATE_FIELD_L4_SPORT:
  1082. pr->sport = data;
  1083. pr->sport_m = data_m;
  1084. break;
  1085. case TEMPLATE_FIELD_L4_DPORT:
  1086. pr->dport = data;
  1087. pr->dport_m = data_m;
  1088. break;
  1089. case TEMPLATE_FIELD_ICMP_IGMP:
  1090. pr->icmp_igmp = data;
  1091. pr->icmp_igmp_m = data_m;
  1092. break;
  1093. default:
  1094. pr_info("%s: unknown field %d\n", __func__, field_type);
  1095. }
  1096. }
  1097. }
  1098. static void rtl839x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr)
  1099. {
  1100. pr->spmmask_fix = (r[6] >> 30) & 0x3;
  1101. pr->spn = (r[6] >> 24) & 0x3f;
  1102. pr->mgnt_vlan = (r[6] >> 23) & 1;
  1103. pr->dmac_hit_sw = (r[6] >> 22) & 1;
  1104. pr->not_first_frag = (r[6] >> 21) & 1;
  1105. pr->frame_type_l4 = (r[6] >> 18) & 7;
  1106. pr->frame_type = (r[6] >> 16) & 3;
  1107. pr->otag_fmt = (r[6] >> 15) & 1;
  1108. pr->itag_fmt = (r[6] >> 14) & 1;
  1109. pr->otag_exist = (r[6] >> 13) & 1;
  1110. pr->itag_exist = (r[6] >> 12) & 1;
  1111. pr->frame_type_l2 = (r[6] >> 10) & 3;
  1112. pr->tid = (r[6] >> 8) & 3;
  1113. pr->spmmask_fix_m = (r[12] >> 6) & 0x3;
  1114. pr->spn_m = r[12] & 0x3f;
  1115. pr->mgnt_vlan_m = (r[13] >> 31) & 1;
  1116. pr->dmac_hit_sw_m = (r[13] >> 30) & 1;
  1117. pr->not_first_frag_m = (r[13] >> 29) & 1;
  1118. pr->frame_type_l4_m = (r[13] >> 26) & 7;
  1119. pr->frame_type_m = (r[13] >> 24) & 3;
  1120. pr->otag_fmt_m = (r[13] >> 23) & 1;
  1121. pr->itag_fmt_m = (r[13] >> 22) & 1;
  1122. pr->otag_exist_m = (r[13] >> 21) & 1;
  1123. pr->itag_exist_m = (r[13] >> 20) & 1;
  1124. pr->frame_type_l2_m = (r[13] >> 18) & 3;
  1125. pr->tid_m = (r[13] >> 16) & 3;
  1126. pr->valid = r[13] & BIT(15);
  1127. pr->cond_not = r[13] & BIT(14);
  1128. pr->cond_and1 = r[13] & BIT(13);
  1129. pr->cond_and2 = r[13] & BIT(12);
  1130. }
  1131. static void rtl839x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr)
  1132. {
  1133. r[6] = ((u32) (pr->spmmask_fix & 0x3)) << 30;
  1134. r[6] |= ((u32) (pr->spn & 0x3f)) << 24;
  1135. r[6] |= pr->mgnt_vlan ? BIT(23) : 0;
  1136. r[6] |= pr->dmac_hit_sw ? BIT(22) : 0;
  1137. r[6] |= pr->not_first_frag ? BIT(21) : 0;
  1138. r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 18;
  1139. r[6] |= ((u32) (pr->frame_type & 0x3)) << 16;
  1140. r[6] |= pr->otag_fmt ? BIT(15) : 0;
  1141. r[6] |= pr->itag_fmt ? BIT(14) : 0;
  1142. r[6] |= pr->otag_exist ? BIT(13) : 0;
  1143. r[6] |= pr->itag_exist ? BIT(12) : 0;
  1144. r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 10;
  1145. r[6] |= ((u32) (pr->tid & 0x3)) << 8;
  1146. r[12] |= ((u32) (pr->spmmask_fix_m & 0x3)) << 6;
  1147. r[12] |= (u32) (pr->spn_m & 0x3f);
  1148. r[13] |= pr->mgnt_vlan_m ? BIT(31) : 0;
  1149. r[13] |= pr->dmac_hit_sw_m ? BIT(30) : 0;
  1150. r[13] |= pr->not_first_frag_m ? BIT(29) : 0;
  1151. r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 26;
  1152. r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 24;
  1153. r[13] |= pr->otag_fmt_m ? BIT(23) : 0;
  1154. r[13] |= pr->itag_fmt_m ? BIT(22) : 0;
  1155. r[13] |= pr->otag_exist_m ? BIT(21) : 0;
  1156. r[13] |= pr->itag_exist_m ? BIT(20) : 0;
  1157. r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 18;
  1158. r[13] |= ((u32) (pr->tid_m & 0x3)) << 16;
  1159. r[13] |= pr->valid ? BIT(15) : 0;
  1160. r[13] |= pr->cond_not ? BIT(14) : 0;
  1161. r[13] |= pr->cond_and1 ? BIT(13) : 0;
  1162. r[13] |= pr->cond_and2 ? BIT(12) : 0;
  1163. }
  1164. static void rtl839x_write_pie_action(u32 r[], struct pie_rule *pr)
  1165. {
  1166. if (pr->drop) {
  1167. r[13] |= 0x9; // Set ACT_MASK_FWD & FWD_ACT = DROP
  1168. r[13] |= BIT(3);
  1169. } else {
  1170. r[13] |= pr->fwd_sel ? BIT(3) : 0;
  1171. r[13] |= pr->fwd_act;
  1172. }
  1173. r[13] |= pr->bypass_sel ? BIT(11) : 0;
  1174. r[13] |= pr->mpls_sel ? BIT(10) : 0;
  1175. r[13] |= pr->nopri_sel ? BIT(9) : 0;
  1176. r[13] |= pr->ovid_sel ? BIT(8) : 0;
  1177. r[13] |= pr->ivid_sel ? BIT(7) : 0;
  1178. r[13] |= pr->meter_sel ? BIT(6) : 0;
  1179. r[13] |= pr->mir_sel ? BIT(5) : 0;
  1180. r[13] |= pr->log_sel ? BIT(4) : 0;
  1181. r[14] |= ((u32)(pr->fwd_data & 0x3fff)) << 18;
  1182. r[14] |= pr->log_octets ? BIT(17) : 0;
  1183. r[14] |= ((u32)(pr->log_data & 0x7ff)) << 4;
  1184. r[14] |= (pr->mir_data & 0x3) << 3;
  1185. r[14] |= ((u32)(pr->meter_data >> 7)) & 0x7;
  1186. r[15] |= (u32)(pr->meter_data) << 26;
  1187. r[15] |= ((u32)(pr->ivid_act) << 23) & 0x3;
  1188. r[15] |= ((u32)(pr->ivid_data) << 9) & 0xfff;
  1189. r[15] |= ((u32)(pr->ovid_act) << 6) & 0x3;
  1190. r[15] |= ((u32)(pr->ovid_data) >> 4) & 0xff;
  1191. r[16] |= ((u32)(pr->ovid_data) & 0xf) << 28;
  1192. r[16] |= ((u32)(pr->nopri_data) & 0x7) << 20;
  1193. r[16] |= ((u32)(pr->mpls_act) & 0x7) << 20;
  1194. r[16] |= ((u32)(pr->mpls_lib_idx) & 0x7) << 20;
  1195. r[16] |= pr->bypass_all ? BIT(9) : 0;
  1196. r[16] |= pr->bypass_igr_stp ? BIT(8) : 0;
  1197. r[16] |= pr->bypass_ibc_sc ? BIT(7) : 0;
  1198. }
  1199. static void rtl839x_read_pie_action(u32 r[], struct pie_rule *pr)
  1200. {
  1201. if (r[13] & BIT(3)) { // ACT_MASK_FWD set, is it a drop?
  1202. if ((r[14] & 0x7) == 1) {
  1203. pr->drop = true;
  1204. } else {
  1205. pr->fwd_sel = true;
  1206. pr->fwd_act = r[14] & 0x7;
  1207. }
  1208. }
  1209. pr->bypass_sel = r[13] & BIT(11);
  1210. pr->mpls_sel = r[13] & BIT(10);
  1211. pr->nopri_sel = r[13] & BIT(9);
  1212. pr->ovid_sel = r[13] & BIT(8);
  1213. pr->ivid_sel = r[13] & BIT(7);
  1214. pr->meter_sel = r[13] & BIT(6);
  1215. pr->mir_sel = r[13] & BIT(5);
  1216. pr->log_sel = r[13] & BIT(4);
  1217. // TODO: Read in data fields
  1218. pr->bypass_all = r[16] & BIT(9);
  1219. pr->bypass_igr_stp = r[16] & BIT(8);
  1220. pr->bypass_ibc_sc = r[16] & BIT(7);
  1221. }
  1222. void rtl839x_pie_rule_dump_raw(u32 r[])
  1223. {
  1224. pr_info("Raw IACL table entry:\n");
  1225. pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]);
  1226. pr_info("Fixed : %06x\n", r[6] >> 8);
  1227. pr_info("Match M: %08x %08x %08x %08x %08x %08x\n",
  1228. (r[6] << 24) | (r[7] >> 8), (r[7] << 24) | (r[8] >> 8), (r[8] << 24) | (r[9] >> 8),
  1229. (r[9] << 24) | (r[10] >> 8), (r[10] << 24) | (r[11] >> 8),
  1230. (r[11] << 24) | (r[12] >> 8));
  1231. pr_info("R[13]: %08x\n", r[13]);
  1232. pr_info("Fixed M: %06x\n", ((r[12] << 16) | (r[13] >> 16)) & 0xffffff);
  1233. pr_info("Valid / not / and1 / and2 : %1x\n", (r[13] >> 12) & 0xf);
  1234. pr_info("r 13-16: %08x %08x %08x %08x\n", r[13], r[14], r[15], r[16]);
  1235. }
  1236. void rtl839x_pie_rule_dump(struct pie_rule *pr)
  1237. {
  1238. pr_info("Drop: %d, fwd: %d, ovid: %d, ivid: %d, flt: %d, log: %d, rmk: %d, meter: %d tagst: %d, mir: %d, nopri: %d, cpupri: %d, otpid: %d, itpid: %d, shape: %d\n",
  1239. pr->drop, pr->fwd_sel, pr->ovid_sel, pr->ivid_sel, pr->flt_sel, pr->log_sel, pr->rmk_sel, pr->log_sel, pr->tagst_sel, pr->mir_sel, pr->nopri_sel,
  1240. pr->cpupri_sel, pr->otpid_sel, pr->itpid_sel, pr->shaper_sel);
  1241. if (pr->fwd_sel)
  1242. pr_info("FWD: %08x\n", pr->fwd_data);
  1243. pr_info("TID: %x, %x\n", pr->tid, pr->tid_m);
  1244. }
  1245. static int rtl839x_pie_rule_read(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
  1246. {
  1247. // Read IACL table (2) via register 0
  1248. struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 2);
  1249. u32 r[17];
  1250. int i;
  1251. int block = idx / PIE_BLOCK_SIZE;
  1252. u32 t_select = sw_r32(RTL839X_ACL_BLK_TMPLTE_CTRL(block));
  1253. memset(pr, 0, sizeof(*pr));
  1254. rtl_table_read(q, idx);
  1255. for (i = 0; i < 17; i++)
  1256. r[i] = sw_r32(rtl_table_data(q, i));
  1257. rtl_table_release(q);
  1258. rtl839x_read_pie_fixed_fields(r, pr);
  1259. if (!pr->valid)
  1260. return 0;
  1261. pr_debug("%s: template_selectors %08x, tid: %d\n", __func__, t_select, pr->tid);
  1262. rtl839x_pie_rule_dump_raw(r);
  1263. rtl839x_read_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
  1264. rtl839x_read_pie_action(r, pr);
  1265. return 0;
  1266. }
  1267. static int rtl839x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
  1268. {
  1269. // Access IACL table (2) via register 0
  1270. struct table_reg *q = rtl_table_get(RTL8390_TBL_0, 2);
  1271. u32 r[17];
  1272. int i;
  1273. int block = idx / PIE_BLOCK_SIZE;
  1274. u32 t_select = sw_r32(RTL839X_ACL_BLK_TMPLTE_CTRL(block));
  1275. pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select);
  1276. for (i = 0; i < 17; i++)
  1277. r[i] = 0;
  1278. if (!pr->valid) {
  1279. rtl_table_write(q, idx);
  1280. rtl_table_release(q);
  1281. return 0;
  1282. }
  1283. rtl839x_write_pie_fixed_fields(r, pr);
  1284. pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 3)) & 0x7);
  1285. rtl839x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
  1286. rtl839x_write_pie_action(r, pr);
  1287. // rtl839x_pie_rule_dump_raw(r);
  1288. for (i = 0; i < 17; i++)
  1289. sw_w32(r[i], rtl_table_data(q, i));
  1290. rtl_table_write(q, idx);
  1291. rtl_table_release(q);
  1292. return 0;
  1293. }
  1294. static bool rtl839x_pie_templ_has(int t, enum template_field_id field_type)
  1295. {
  1296. int i;
  1297. enum template_field_id ft;
  1298. for (i = 0; i < N_FIXED_FIELDS; i++) {
  1299. ft = fixed_templates[t][i];
  1300. if (field_type == ft)
  1301. return true;
  1302. }
  1303. return false;
  1304. }
  1305. static int rtl839x_pie_verify_template(struct rtl838x_switch_priv *priv,
  1306. struct pie_rule *pr, int t, int block)
  1307. {
  1308. int i;
  1309. if (!pr->is_ipv6 && pr->sip_m && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_SIP0))
  1310. return -1;
  1311. if (!pr->is_ipv6 && pr->dip_m && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_DIP0))
  1312. return -1;
  1313. if (pr->is_ipv6) {
  1314. if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1]
  1315. || pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3])
  1316. && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_SIP2))
  1317. return -1;
  1318. if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1]
  1319. || pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3])
  1320. && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_DIP2))
  1321. return -1;
  1322. }
  1323. if (ether_addr_to_u64(pr->smac) && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0))
  1324. return -1;
  1325. if (ether_addr_to_u64(pr->dmac) && !rtl839x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0))
  1326. return -1;
  1327. // TODO: Check more
  1328. i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE);
  1329. if (i >= PIE_BLOCK_SIZE)
  1330. return -1;
  1331. return i + PIE_BLOCK_SIZE * block;
  1332. }
  1333. static int rtl839x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
  1334. {
  1335. int idx, block, j, t;
  1336. int min_block = 0;
  1337. int max_block = priv->n_pie_blocks / 2;
  1338. if (pr->is_egress) {
  1339. min_block = max_block;
  1340. max_block = priv->n_pie_blocks;
  1341. }
  1342. mutex_lock(&priv->pie_mutex);
  1343. for (block = min_block; block < max_block; block++) {
  1344. for (j = 0; j < 2; j++) {
  1345. t = (sw_r32(RTL839X_ACL_BLK_TMPLTE_CTRL(block)) >> (j * 3)) & 0x7;
  1346. idx = rtl839x_pie_verify_template(priv, pr, t, block);
  1347. if (idx >= 0)
  1348. break;
  1349. }
  1350. if (j < 2)
  1351. break;
  1352. }
  1353. if (block >= priv->n_pie_blocks) {
  1354. mutex_unlock(&priv->pie_mutex);
  1355. return -EOPNOTSUPP;
  1356. }
  1357. set_bit(idx, priv->pie_use_bm);
  1358. pr->valid = true;
  1359. pr->tid = j; // Mapped to template number
  1360. pr->tid_m = 0x3;
  1361. pr->id = idx;
  1362. rtl839x_pie_lookup_enable(priv, idx);
  1363. rtl839x_pie_rule_write(priv, idx, pr);
  1364. mutex_unlock(&priv->pie_mutex);
  1365. return 0;
  1366. }
  1367. static void rtl839x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
  1368. {
  1369. int idx = pr->id;
  1370. rtl839x_pie_rule_del(priv, idx, idx);
  1371. clear_bit(idx, priv->pie_use_bm);
  1372. }
  1373. static void rtl839x_pie_init(struct rtl838x_switch_priv *priv)
  1374. {
  1375. int i;
  1376. u32 template_selectors;
  1377. mutex_init(&priv->pie_mutex);
  1378. // Power on all PIE blocks
  1379. for (i = 0; i < priv->n_pie_blocks; i++)
  1380. sw_w32_mask(0, BIT(i), RTL839X_PS_ACL_PWR_CTRL);
  1381. // Set ingress and egress ACL blocks to 50/50: first Egress block is 9
  1382. sw_w32_mask(0x1f, 9, RTL839X_ACL_CTRL); // Writes 9 to cutline field
  1383. // Include IPG in metering
  1384. sw_w32(1, RTL839X_METER_GLB_CTRL);
  1385. // Delete all present rules
  1386. rtl839x_pie_rule_del(priv, 0, priv->n_pie_blocks * PIE_BLOCK_SIZE - 1);
  1387. // Enable predefined templates 0, 1 for blocks 0-2
  1388. template_selectors = 0 | (1 << 3);
  1389. for (i = 0; i < 3; i++)
  1390. sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i));
  1391. // Enable predefined templates 2, 3 for blocks 3-5
  1392. template_selectors = 2 | (3 << 3);
  1393. for (i = 3; i < 6; i++)
  1394. sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i));
  1395. // Enable predefined templates 1, 4 for blocks 6-8
  1396. template_selectors = 2 | (3 << 3);
  1397. for (i = 6; i < 9; i++)
  1398. sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i));
  1399. // Enable predefined templates 0, 1 for blocks 9-11
  1400. template_selectors = 0 | (1 << 3);
  1401. for (i = 9; i < 12; i++)
  1402. sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i));
  1403. // Enable predefined templates 2, 3 for blocks 12-14
  1404. template_selectors = 2 | (3 << 3);
  1405. for (i = 12; i < 15; i++)
  1406. sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i));
  1407. // Enable predefined templates 1, 4 for blocks 15-17
  1408. template_selectors = 2 | (3 << 3);
  1409. for (i = 15; i < 18; i++)
  1410. sw_w32(template_selectors, RTL839X_ACL_BLK_TMPLTE_CTRL(i));
  1411. }
  1412. static u32 rtl839x_packet_cntr_read(int counter)
  1413. {
  1414. u32 v;
  1415. // Read LOG table (4) via register RTL8390_TBL_0
  1416. struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 4);
  1417. pr_debug("In %s, id %d\n", __func__, counter);
  1418. rtl_table_read(r, counter / 2);
  1419. // The table has a size of 2 registers
  1420. if (counter % 2)
  1421. v = sw_r32(rtl_table_data(r, 0));
  1422. else
  1423. v = sw_r32(rtl_table_data(r, 1));
  1424. rtl_table_release(r);
  1425. return v;
  1426. }
  1427. static void rtl839x_packet_cntr_clear(int counter)
  1428. {
  1429. // Access LOG table (4) via register RTL8390_TBL_0
  1430. struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 4);
  1431. pr_debug("In %s, id %d\n", __func__, counter);
  1432. // The table has a size of 2 registers
  1433. if (counter % 2)
  1434. sw_w32(0, rtl_table_data(r, 0));
  1435. else
  1436. sw_w32(0, rtl_table_data(r, 1));
  1437. rtl_table_write(r, counter / 2);
  1438. rtl_table_release(r);
  1439. }
  1440. static void rtl839x_route_read(int idx, struct rtl83xx_route *rt)
  1441. {
  1442. u64 v;
  1443. // Read ROUTING table (2) via register RTL8390_TBL_1
  1444. struct table_reg *r = rtl_table_get(RTL8390_TBL_1, 2);
  1445. pr_debug("In %s\n", __func__);
  1446. rtl_table_read(r, idx);
  1447. // The table has a size of 2 registers
  1448. v = sw_r32(rtl_table_data(r, 0));
  1449. v <<= 32;
  1450. v |= sw_r32(rtl_table_data(r, 1));
  1451. rt->switch_mac_id = (v >> 12) & 0xf;
  1452. rt->nh.gw = v >> 16;
  1453. rtl_table_release(r);
  1454. }
  1455. static void rtl839x_route_write(int idx, struct rtl83xx_route *rt)
  1456. {
  1457. u32 v;
  1458. // Read ROUTING table (2) via register RTL8390_TBL_1
  1459. struct table_reg *r = rtl_table_get(RTL8390_TBL_1, 2);
  1460. pr_debug("In %s\n", __func__);
  1461. sw_w32(rt->nh.gw >> 16, rtl_table_data(r, 0));
  1462. v = rt->nh.gw << 16;
  1463. v |= rt->switch_mac_id << 12;
  1464. sw_w32(v, rtl_table_data(r, 1));
  1465. rtl_table_write(r, idx);
  1466. rtl_table_release(r);
  1467. }
  1468. /*
  1469. * Configure the switch's own MAC addresses used when routing packets
  1470. */
  1471. static void rtl839x_setup_port_macs(struct rtl838x_switch_priv *priv)
  1472. {
  1473. int i;
  1474. struct net_device *dev;
  1475. u64 mac;
  1476. pr_debug("%s: got port %08x\n", __func__, (u32)priv->ports[priv->cpu_port].dp);
  1477. dev = priv->ports[priv->cpu_port].dp->slave;
  1478. mac = ether_addr_to_u64(dev->dev_addr);
  1479. for (i = 0; i < 15; i++) {
  1480. mac++; // BUG: VRRP for testing
  1481. sw_w32(mac >> 32, RTL839X_ROUTING_SA_CTRL + i * 8);
  1482. sw_w32(mac, RTL839X_ROUTING_SA_CTRL + i * 8 + 4);
  1483. }
  1484. }
  1485. int rtl839x_l3_setup(struct rtl838x_switch_priv *priv)
  1486. {
  1487. rtl839x_setup_port_macs(priv);
  1488. return 0;
  1489. }
  1490. void rtl839x_vlan_port_keep_tag_set(int port, bool keep_outer, bool keep_inner)
  1491. {
  1492. sw_w32(FIELD_PREP(RTL839X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK,
  1493. keep_outer ? RTL839X_VLAN_PORT_TAG_STS_TAGGED : RTL839X_VLAN_PORT_TAG_STS_UNTAG) |
  1494. FIELD_PREP(RTL839X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK,
  1495. keep_inner ? RTL839X_VLAN_PORT_TAG_STS_TAGGED : RTL839X_VLAN_PORT_TAG_STS_UNTAG),
  1496. RTL839X_VLAN_PORT_TAG_STS_CTRL(port));
  1497. }
  1498. void rtl839x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode)
  1499. {
  1500. if (type == PBVLAN_TYPE_INNER)
  1501. sw_w32_mask(0x3, mode, RTL839X_VLAN_PORT_PB_VLAN + (port << 2));
  1502. else
  1503. sw_w32_mask(0x3 << 14, mode << 14, RTL839X_VLAN_PORT_PB_VLAN + (port << 2));
  1504. }
  1505. void rtl839x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid)
  1506. {
  1507. if (type == PBVLAN_TYPE_INNER)
  1508. sw_w32_mask(0xfff << 2, pvid << 2, RTL839X_VLAN_PORT_PB_VLAN + (port << 2));
  1509. else
  1510. sw_w32_mask(0xfff << 16, pvid << 16, RTL839X_VLAN_PORT_PB_VLAN + (port << 2));
  1511. }
  1512. static int rtl839x_set_ageing_time(unsigned long msec)
  1513. {
  1514. int t = sw_r32(RTL839X_L2_CTRL_1);
  1515. t &= 0x1FFFFF;
  1516. t = t * 3 / 5; /* Aging time in seconds. 0: L2 aging disabled */
  1517. pr_debug("L2 AGING time: %d sec\n", t);
  1518. t = (msec * 5 + 2000) / 3000;
  1519. t = t > 0x1FFFFF ? 0x1FFFFF : t;
  1520. sw_w32_mask(0x1FFFFF, t, RTL839X_L2_CTRL_1);
  1521. pr_debug("Dynamic aging for ports: %x\n", sw_r32(RTL839X_L2_PORT_AGING_OUT));
  1522. return 0;
  1523. }
  1524. static void rtl839x_set_igr_filter(int port, enum igr_filter state)
  1525. {
  1526. sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1),
  1527. RTL839X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2)));
  1528. }
  1529. static void rtl839x_set_egr_filter(int port, enum egr_filter state)
  1530. {
  1531. sw_w32_mask(0x1 << (port % 0x20), state << (port % 0x20),
  1532. RTL839X_VLAN_PORT_EGR_FLTR + (((port >> 5) << 2)));
  1533. }
  1534. void rtl839x_set_distribution_algorithm(int group, int algoidx, u32 algomsk)
  1535. {
  1536. sw_w32_mask(3 << ((group & 0xf) << 1), algoidx << ((group & 0xf) << 1),
  1537. RTL839X_TRK_HASH_IDX_CTRL + ((group >> 4) << 2));
  1538. sw_w32(algomsk, RTL839X_TRK_HASH_CTRL + (algoidx << 2));
  1539. }
  1540. void rtl839x_set_receive_management_action(int port, rma_ctrl_t type, action_type_t action)
  1541. {
  1542. switch(type) {
  1543. case BPDU:
  1544. sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
  1545. RTL839X_RMA_BPDU_CTRL + ((port >> 4) << 2));
  1546. break;
  1547. case PTP:
  1548. sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
  1549. RTL839X_RMA_PTP_CTRL + ((port >> 4) << 2));
  1550. break;
  1551. case LLTP:
  1552. sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
  1553. RTL839X_RMA_LLTP_CTRL + ((port >> 4) << 2));
  1554. break;
  1555. default:
  1556. break;
  1557. }
  1558. }
  1559. const struct rtl838x_reg rtl839x_reg = {
  1560. .mask_port_reg_be = rtl839x_mask_port_reg_be,
  1561. .set_port_reg_be = rtl839x_set_port_reg_be,
  1562. .get_port_reg_be = rtl839x_get_port_reg_be,
  1563. .mask_port_reg_le = rtl839x_mask_port_reg_le,
  1564. .set_port_reg_le = rtl839x_set_port_reg_le,
  1565. .get_port_reg_le = rtl839x_get_port_reg_le,
  1566. .stat_port_rst = RTL839X_STAT_PORT_RST,
  1567. .stat_rst = RTL839X_STAT_RST,
  1568. .stat_port_std_mib = RTL839X_STAT_PORT_STD_MIB,
  1569. .traffic_enable = rtl839x_traffic_enable,
  1570. .traffic_disable = rtl839x_traffic_disable,
  1571. .traffic_get = rtl839x_traffic_get,
  1572. .traffic_set = rtl839x_traffic_set,
  1573. .port_iso_ctrl = rtl839x_port_iso_ctrl,
  1574. .l2_ctrl_0 = RTL839X_L2_CTRL_0,
  1575. .l2_ctrl_1 = RTL839X_L2_CTRL_1,
  1576. .l2_port_aging_out = RTL839X_L2_PORT_AGING_OUT,
  1577. .set_ageing_time = rtl839x_set_ageing_time,
  1578. .smi_poll_ctrl = RTL839X_SMI_PORT_POLLING_CTRL,
  1579. .l2_tbl_flush_ctrl = RTL839X_L2_TBL_FLUSH_CTRL,
  1580. .exec_tbl0_cmd = rtl839x_exec_tbl0_cmd,
  1581. .exec_tbl1_cmd = rtl839x_exec_tbl1_cmd,
  1582. .tbl_access_data_0 = rtl839x_tbl_access_data_0,
  1583. .isr_glb_src = RTL839X_ISR_GLB_SRC,
  1584. .isr_port_link_sts_chg = RTL839X_ISR_PORT_LINK_STS_CHG,
  1585. .imr_port_link_sts_chg = RTL839X_IMR_PORT_LINK_STS_CHG,
  1586. .imr_glb = RTL839X_IMR_GLB,
  1587. .vlan_tables_read = rtl839x_vlan_tables_read,
  1588. .vlan_set_tagged = rtl839x_vlan_set_tagged,
  1589. .vlan_set_untagged = rtl839x_vlan_set_untagged,
  1590. .vlan_profile_dump = rtl839x_vlan_profile_dump,
  1591. .vlan_profile_setup = rtl839x_vlan_profile_setup,
  1592. .vlan_fwd_on_inner = rtl839x_vlan_fwd_on_inner,
  1593. .vlan_port_keep_tag_set = rtl839x_vlan_port_keep_tag_set,
  1594. .vlan_port_pvidmode_set = rtl839x_vlan_port_pvidmode_set,
  1595. .vlan_port_pvid_set = rtl839x_vlan_port_pvid_set,
  1596. .set_vlan_igr_filter = rtl839x_set_igr_filter,
  1597. .set_vlan_egr_filter = rtl839x_set_egr_filter,
  1598. .enable_learning = rtl839x_enable_learning,
  1599. .enable_flood = rtl839x_enable_flood,
  1600. .enable_mcast_flood = rtl839x_enable_mcast_flood,
  1601. .enable_bcast_flood = rtl839x_enable_bcast_flood,
  1602. .stp_get = rtl839x_stp_get,
  1603. .stp_set = rtl839x_stp_set,
  1604. .mac_force_mode_ctrl = rtl839x_mac_force_mode_ctrl,
  1605. .mac_port_ctrl = rtl839x_mac_port_ctrl,
  1606. .l2_port_new_salrn = rtl839x_l2_port_new_salrn,
  1607. .l2_port_new_sa_fwd = rtl839x_l2_port_new_sa_fwd,
  1608. .mir_ctrl = RTL839X_MIR_CTRL,
  1609. .mir_dpm = RTL839X_MIR_DPM_CTRL,
  1610. .mir_spm = RTL839X_MIR_SPM_CTRL,
  1611. .mac_link_sts = RTL839X_MAC_LINK_STS,
  1612. .mac_link_dup_sts = RTL839X_MAC_LINK_DUP_STS,
  1613. .mac_link_spd_sts = rtl839x_mac_link_spd_sts,
  1614. .mac_rx_pause_sts = RTL839X_MAC_RX_PAUSE_STS,
  1615. .mac_tx_pause_sts = RTL839X_MAC_TX_PAUSE_STS,
  1616. .read_l2_entry_using_hash = rtl839x_read_l2_entry_using_hash,
  1617. .write_l2_entry_using_hash = rtl839x_write_l2_entry_using_hash,
  1618. .read_cam = rtl839x_read_cam,
  1619. .write_cam = rtl839x_write_cam,
  1620. .trk_mbr_ctr = rtl839x_trk_mbr_ctr,
  1621. .rma_bpdu_fld_pmask = RTL839X_RMA_BPDU_FLD_PMSK,
  1622. .spcl_trap_eapol_ctrl = RTL839X_SPCL_TRAP_EAPOL_CTRL,
  1623. .init_eee = rtl839x_init_eee,
  1624. .port_eee_set = rtl839x_port_eee_set,
  1625. .eee_port_ability = rtl839x_eee_port_ability,
  1626. .l2_hash_seed = rtl839x_l2_hash_seed,
  1627. .l2_hash_key = rtl839x_l2_hash_key,
  1628. .read_mcast_pmask = rtl839x_read_mcast_pmask,
  1629. .write_mcast_pmask = rtl839x_write_mcast_pmask,
  1630. .pie_init = rtl839x_pie_init,
  1631. .pie_rule_read = rtl839x_pie_rule_read,
  1632. .pie_rule_write = rtl839x_pie_rule_write,
  1633. .pie_rule_add = rtl839x_pie_rule_add,
  1634. .pie_rule_rm = rtl839x_pie_rule_rm,
  1635. .l2_learning_setup = rtl839x_l2_learning_setup,
  1636. .packet_cntr_read = rtl839x_packet_cntr_read,
  1637. .packet_cntr_clear = rtl839x_packet_cntr_clear,
  1638. .route_read = rtl839x_route_read,
  1639. .route_write = rtl839x_route_write,
  1640. .l3_setup = rtl839x_l3_setup,
  1641. .set_distribution_algorithm = rtl839x_set_distribution_algorithm,
  1642. .set_receive_management_action = rtl839x_set_receive_management_action,
  1643. };