mediatek-ge-soc.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263
  1. // SPDX-License-Identifier: GPL-2.0+
  2. #include <linux/bitfield.h>
  3. #include <linux/module.h>
  4. #include <linux/nvmem-consumer.h>
  5. #include <linux/of_address.h>
  6. #include <linux/of_platform.h>
  7. #include <linux/pinctrl/consumer.h>
  8. #include <linux/phy.h>
  9. #define MTK_GPHY_ID_MT7981 0x03a29461
  10. #define MTK_GPHY_ID_MT7988 0x03a29481
  11. #define MTK_EXT_PAGE_ACCESS 0x1f
  12. #define MTK_PHY_PAGE_STANDARD 0x0000
  13. #define MTK_PHY_PAGE_EXTENDED_3 0x0003
  14. #define MTK_PHY_LPI_REG_14 0x14
  15. #define MTK_PHY_LPI_WAKE_TIMER_1000_MASK GENMASK(8, 0)
  16. #define MTK_PHY_LPI_REG_1c 0x1c
  17. #define MTK_PHY_SMI_DET_ON_THRESH_MASK GENMASK(13, 8)
  18. #define MTK_PHY_PAGE_EXTENDED_2A30 0x2a30
  19. #define MTK_PHY_PAGE_EXTENDED_52B5 0x52b5
  20. #define ANALOG_INTERNAL_OPERATION_MAX_US 20
  21. #define TXRESERVE_MIN 0
  22. #define TXRESERVE_MAX 7
  23. #define MTK_PHY_ANARG_RG 0x10
  24. #define MTK_PHY_TCLKOFFSET_MASK GENMASK(12, 8)
  25. /* Registers on MDIO_MMD_VEND1 */
  26. #define MTK_PHY_TXVLD_DA_RG 0x12
  27. #define MTK_PHY_DA_TX_I2MPB_A_GBE_MASK GENMASK(15, 10)
  28. #define MTK_PHY_DA_TX_I2MPB_A_TBT_MASK GENMASK(5, 0)
  29. #define MTK_PHY_TX_I2MPB_TEST_MODE_A2 0x16
  30. #define MTK_PHY_DA_TX_I2MPB_A_HBT_MASK GENMASK(15, 10)
  31. #define MTK_PHY_DA_TX_I2MPB_A_TST_MASK GENMASK(5, 0)
  32. #define MTK_PHY_TX_I2MPB_TEST_MODE_B1 0x17
  33. #define MTK_PHY_DA_TX_I2MPB_B_GBE_MASK GENMASK(13, 8)
  34. #define MTK_PHY_DA_TX_I2MPB_B_TBT_MASK GENMASK(5, 0)
  35. #define MTK_PHY_TX_I2MPB_TEST_MODE_B2 0x18
  36. #define MTK_PHY_DA_TX_I2MPB_B_HBT_MASK GENMASK(13, 8)
  37. #define MTK_PHY_DA_TX_I2MPB_B_TST_MASK GENMASK(5, 0)
  38. #define MTK_PHY_TX_I2MPB_TEST_MODE_C1 0x19
  39. #define MTK_PHY_DA_TX_I2MPB_C_GBE_MASK GENMASK(13, 8)
  40. #define MTK_PHY_DA_TX_I2MPB_C_TBT_MASK GENMASK(5, 0)
  41. #define MTK_PHY_TX_I2MPB_TEST_MODE_C2 0x20
  42. #define MTK_PHY_DA_TX_I2MPB_C_HBT_MASK GENMASK(13, 8)
  43. #define MTK_PHY_DA_TX_I2MPB_C_TST_MASK GENMASK(5, 0)
  44. #define MTK_PHY_TX_I2MPB_TEST_MODE_D1 0x21
  45. #define MTK_PHY_DA_TX_I2MPB_D_GBE_MASK GENMASK(13, 8)
  46. #define MTK_PHY_DA_TX_I2MPB_D_TBT_MASK GENMASK(5, 0)
  47. #define MTK_PHY_TX_I2MPB_TEST_MODE_D2 0x22
  48. #define MTK_PHY_DA_TX_I2MPB_D_HBT_MASK GENMASK(13, 8)
  49. #define MTK_PHY_DA_TX_I2MPB_D_TST_MASK GENMASK(5, 0)
  50. #define MTK_PHY_RXADC_CTRL_RG7 0xc6
  51. #define MTK_PHY_DA_AD_BUF_BIAS_LP_MASK GENMASK(9, 8)
  52. #define MTK_PHY_RXADC_CTRL_RG9 0xc8
  53. #define MTK_PHY_DA_RX_PSBN_TBT_MASK GENMASK(14, 12)
  54. #define MTK_PHY_DA_RX_PSBN_HBT_MASK GENMASK(10, 8)
  55. #define MTK_PHY_DA_RX_PSBN_GBE_MASK GENMASK(6, 4)
  56. #define MTK_PHY_DA_RX_PSBN_LP_MASK GENMASK(2, 0)
  57. #define MTK_PHY_LDO_OUTPUT_V 0xd7
  58. #define MTK_PHY_RG_ANA_CAL_RG0 0xdb
  59. #define MTK_PHY_RG_CAL_CKINV BIT(12)
  60. #define MTK_PHY_RG_ANA_CALEN BIT(8)
  61. #define MTK_PHY_RG_ZCALEN_A BIT(0)
  62. #define MTK_PHY_RG_ANA_CAL_RG1 0xdc
  63. #define MTK_PHY_RG_ZCALEN_B BIT(12)
  64. #define MTK_PHY_RG_ZCALEN_C BIT(8)
  65. #define MTK_PHY_RG_ZCALEN_D BIT(4)
  66. #define MTK_PHY_RG_TXVOS_CALEN BIT(0)
  67. #define MTK_PHY_RG_ANA_CAL_RG5 0xe0
  68. #define MTK_PHY_RG_REXT_TRIM_MASK GENMASK(13, 8)
  69. #define MTK_PHY_RG_TX_FILTER 0xfe
  70. #define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120 0x120
  71. #define MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK GENMASK(12, 8)
  72. #define MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK GENMASK(4, 0)
  73. #define MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122 0x122
  74. #define MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK GENMASK(7, 0)
  75. #define MTK_PHY_RG_TESTMUX_ADC_CTRL 0x144
  76. #define MTK_PHY_RG_TXEN_DIG_MASK GENMASK(5, 5)
  77. #define MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B 0x172
  78. #define MTK_PHY_CR_TX_AMP_OFFSET_A_MASK GENMASK(13, 8)
  79. #define MTK_PHY_CR_TX_AMP_OFFSET_B_MASK GENMASK(6, 0)
  80. #define MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D 0x173
  81. #define MTK_PHY_CR_TX_AMP_OFFSET_C_MASK GENMASK(13, 8)
  82. #define MTK_PHY_CR_TX_AMP_OFFSET_D_MASK GENMASK(6, 0)
  83. #define MTK_PHY_RG_AD_CAL_COMP 0x17a
  84. #define MTK_PHY_AD_CAL_COMP_OUT_SHIFT (8)
  85. #define MTK_PHY_RG_AD_CAL_CLK 0x17b
  86. #define MTK_PHY_DA_CAL_CLK BIT(0)
  87. #define MTK_PHY_RG_AD_CALIN 0x17c
  88. #define MTK_PHY_DA_CALIN_FLAG BIT(0)
  89. #define MTK_PHY_RG_DASN_DAC_IN0_A 0x17d
  90. #define MTK_PHY_DASN_DAC_IN0_A_MASK GENMASK(9, 0)
  91. #define MTK_PHY_RG_DASN_DAC_IN0_B 0x17e
  92. #define MTK_PHY_DASN_DAC_IN0_B_MASK GENMASK(9, 0)
  93. #define MTK_PHY_RG_DASN_DAC_IN0_C 0x17f
  94. #define MTK_PHY_DASN_DAC_IN0_C_MASK GENMASK(9, 0)
  95. #define MTK_PHY_RG_DASN_DAC_IN0_D 0x180
  96. #define MTK_PHY_DASN_DAC_IN0_D_MASK GENMASK(9, 0)
  97. #define MTK_PHY_RG_DASN_DAC_IN1_A 0x181
  98. #define MTK_PHY_DASN_DAC_IN1_A_MASK GENMASK(9, 0)
  99. #define MTK_PHY_RG_DASN_DAC_IN1_B 0x182
  100. #define MTK_PHY_DASN_DAC_IN1_B_MASK GENMASK(9, 0)
  101. #define MTK_PHY_RG_DASN_DAC_IN1_C 0x183
  102. #define MTK_PHY_DASN_DAC_IN1_C_MASK GENMASK(9, 0)
  103. #define MTK_PHY_RG_DASN_DAC_IN1_D 0x184
  104. #define MTK_PHY_DASN_DAC_IN1_D_MASK GENMASK(9, 0)
  105. #define MTK_PHY_RG_DEV1E_REG19b 0x19b
  106. #define MTK_PHY_BYPASS_DSP_LPI_READY BIT(8)
  107. #define MTK_PHY_RG_LP_IIR2_K1_L 0x22a
  108. #define MTK_PHY_RG_LP_IIR2_K1_U 0x22b
  109. #define MTK_PHY_RG_LP_IIR2_K2_L 0x22c
  110. #define MTK_PHY_RG_LP_IIR2_K2_U 0x22d
  111. #define MTK_PHY_RG_LP_IIR2_K3_L 0x22e
  112. #define MTK_PHY_RG_LP_IIR2_K3_U 0x22f
  113. #define MTK_PHY_RG_LP_IIR2_K4_L 0x230
  114. #define MTK_PHY_RG_LP_IIR2_K4_U 0x231
  115. #define MTK_PHY_RG_LP_IIR2_K5_L 0x232
  116. #define MTK_PHY_RG_LP_IIR2_K5_U 0x233
  117. #define MTK_PHY_RG_DEV1E_REG234 0x234
  118. #define MTK_PHY_TR_OPEN_LOOP_EN_MASK GENMASK(0, 0)
  119. #define MTK_PHY_LPF_X_AVERAGE_MASK GENMASK(7, 4)
  120. #define MTK_PHY_TR_LP_IIR_EEE_EN BIT(12)
  121. #define MTK_PHY_RG_LPF_CNT_VAL 0x235
  122. #define MTK_PHY_RG_DEV1E_REG238 0x238
  123. #define MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK GENMASK(8, 0)
  124. #define MTK_PHY_LPI_SLV_SEND_TX_EN BIT(12)
  125. #define MTK_PHY_RG_DEV1E_REG239 0x239
  126. #define MTK_PHY_LPI_SEND_LOC_TIMER_MASK GENMASK(8, 0)
  127. #define MTK_PHY_LPI_TXPCS_LOC_RCV BIT(12)
  128. #define MTK_PHY_RG_DEV1E_REG27C 0x27c
  129. #define MTK_PHY_VGASTATE_FFE_THR_ST1_MASK GENMASK(12, 8)
  130. #define MTK_PHY_RG_DEV1E_REG27D 0x27d
  131. #define MTK_PHY_VGASTATE_FFE_THR_ST2_MASK GENMASK(4, 0)
  132. #define MTK_PHY_RG_DEV1E_REG2C7 0x2c7
  133. #define MTK_PHY_MAX_GAIN_MASK GENMASK(4, 0)
  134. #define MTK_PHY_MIN_GAIN_MASK GENMASK(12, 8)
  135. #define MTK_PHY_RG_DEV1E_REG2D1 0x2d1
  136. #define MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK GENMASK(7, 0)
  137. #define MTK_PHY_LPI_SKIP_SD_SLV_TR BIT(8)
  138. #define MTK_PHY_LPI_TR_READY BIT(9)
  139. #define MTK_PHY_LPI_VCO_EEE_STG0_EN BIT(10)
  140. #define MTK_PHY_RG_DEV1E_REG323 0x323
  141. #define MTK_PHY_EEE_WAKE_MAS_INT_DC BIT(0)
  142. #define MTK_PHY_EEE_WAKE_SLV_INT_DC BIT(4)
  143. #define MTK_PHY_RG_DEV1E_REG324 0x324
  144. #define MTK_PHY_SMI_DETCNT_MAX_MASK GENMASK(5, 0)
  145. #define MTK_PHY_SMI_DET_MAX_EN BIT(8)
  146. #define MTK_PHY_RG_DEV1E_REG326 0x326
  147. #define MTK_PHY_LPI_MODE_SD_ON BIT(0)
  148. #define MTK_PHY_RESET_RANDUPD_CNT BIT(1)
  149. #define MTK_PHY_TREC_UPDATE_ENAB_CLR BIT(2)
  150. #define MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF BIT(4)
  151. #define MTK_PHY_TR_READY_SKIP_AFE_WAKEUP BIT(5)
  152. #define MTK_PHY_LDO_PUMP_EN_PAIRAB 0x502
  153. #define MTK_PHY_LDO_PUMP_EN_PAIRCD 0x503
  154. #define MTK_PHY_DA_TX_R50_PAIR_A 0x53d
  155. #define MTK_PHY_DA_TX_R50_PAIR_B 0x53e
  156. #define MTK_PHY_DA_TX_R50_PAIR_C 0x53f
  157. #define MTK_PHY_DA_TX_R50_PAIR_D 0x540
  158. /* Registers on MDIO_MMD_VEND2 */
  159. #define MTK_PHY_LED0_ON_CTRL 0x24
  160. #define MTK_PHY_LED0_ON_MASK GENMASK(6, 0)
  161. #define MTK_PHY_LED0_ON_LINK1000 BIT(0)
  162. #define MTK_PHY_LED0_ON_LINK100 BIT(1)
  163. #define MTK_PHY_LED0_ON_LINK10 BIT(2)
  164. #define MTK_PHY_LED0_ON_LINKDOWN BIT(3)
  165. #define MTK_PHY_LED0_ON_FDX BIT(4) /* Full duplex */
  166. #define MTK_PHY_LED0_ON_HDX BIT(5) /* Half duplex */
  167. #define MTK_PHY_LED0_FORCE_ON BIT(6)
  168. #define MTK_PHY_LED0_POLARITY BIT(14)
  169. #define MTK_PHY_LED0_ENABLE BIT(15)
  170. #define MTK_PHY_LED0_BLINK_CTRL 0x25
  171. #define MTK_PHY_LED0_1000TX BIT(0)
  172. #define MTK_PHY_LED0_1000RX BIT(1)
  173. #define MTK_PHY_LED0_100TX BIT(2)
  174. #define MTK_PHY_LED0_100RX BIT(3)
  175. #define MTK_PHY_LED0_10TX BIT(4)
  176. #define MTK_PHY_LED0_10RX BIT(5)
  177. #define MTK_PHY_LED0_COLLISION BIT(6)
  178. #define MTK_PHY_LED0_RX_CRC_ERR BIT(7)
  179. #define MTK_PHY_LED0_RX_IDLE_ERR BIT(8)
  180. #define MTK_PHY_LED0_FORCE_BLINK BIT(9)
  181. #define MTK_PHY_LED1_ON_CTRL 0x26
  182. #define MTK_PHY_LED1_ON_MASK GENMASK(6, 0)
  183. #define MTK_PHY_LED1_ON_LINK1000 BIT(0)
  184. #define MTK_PHY_LED1_ON_LINK100 BIT(1)
  185. #define MTK_PHY_LED1_ON_LINK10 BIT(2)
  186. #define MTK_PHY_LED1_ON_LINKDOWN BIT(3)
  187. #define MTK_PHY_LED1_ON_FDX BIT(4) /* Full duplex */
  188. #define MTK_PHY_LED1_ON_HDX BIT(5) /* Half duplex */
  189. #define MTK_PHY_LED1_FORCE_ON BIT(6)
  190. #define MTK_PHY_LED1_POLARITY BIT(14)
  191. #define MTK_PHY_LED1_ENABLE BIT(15)
  192. #define MTK_PHY_LED1_BLINK_CTRL 0x27
  193. #define MTK_PHY_LED1_1000TX BIT(0)
  194. #define MTK_PHY_LED1_1000RX BIT(1)
  195. #define MTK_PHY_LED1_100TX BIT(2)
  196. #define MTK_PHY_LED1_100RX BIT(3)
  197. #define MTK_PHY_LED1_10TX BIT(4)
  198. #define MTK_PHY_LED1_10RX BIT(5)
  199. #define MTK_PHY_LED1_COLLISION BIT(6)
  200. #define MTK_PHY_LED1_RX_CRC_ERR BIT(7)
  201. #define MTK_PHY_LED1_RX_IDLE_ERR BIT(8)
  202. #define MTK_PHY_LED1_FORCE_BLINK BIT(9)
  203. #define MTK_PHY_RG_BG_RASEL 0x115
  204. #define MTK_PHY_RG_BG_RASEL_MASK GENMASK(2, 0)
  205. /* These macro privides efuse parsing for internal phy. */
  206. #define EFS_DA_TX_I2MPB_A(x) (((x) >> 0) & GENMASK(5, 0))
  207. #define EFS_DA_TX_I2MPB_B(x) (((x) >> 6) & GENMASK(5, 0))
  208. #define EFS_DA_TX_I2MPB_C(x) (((x) >> 12) & GENMASK(5, 0))
  209. #define EFS_DA_TX_I2MPB_D(x) (((x) >> 18) & GENMASK(5, 0))
  210. #define EFS_DA_TX_AMP_OFFSET_A(x) (((x) >> 24) & GENMASK(5, 0))
  211. #define EFS_DA_TX_AMP_OFFSET_B(x) (((x) >> 0) & GENMASK(5, 0))
  212. #define EFS_DA_TX_AMP_OFFSET_C(x) (((x) >> 6) & GENMASK(5, 0))
  213. #define EFS_DA_TX_AMP_OFFSET_D(x) (((x) >> 12) & GENMASK(5, 0))
  214. #define EFS_DA_TX_R50_A(x) (((x) >> 18) & GENMASK(5, 0))
  215. #define EFS_DA_TX_R50_B(x) (((x) >> 24) & GENMASK(5, 0))
  216. #define EFS_DA_TX_R50_C(x) (((x) >> 0) & GENMASK(5, 0))
  217. #define EFS_DA_TX_R50_D(x) (((x) >> 6) & GENMASK(5, 0))
  218. #define EFS_RG_BG_RASEL(x) (((x) >> 4) & GENMASK(2, 0))
  219. #define EFS_RG_REXT_TRIM(x) (((x) >> 7) & GENMASK(5, 0))
  220. enum {
  221. NO_PAIR,
  222. PAIR_A,
  223. PAIR_B,
  224. PAIR_C,
  225. PAIR_D,
  226. };
  227. enum {
  228. GPHY_PORT0,
  229. GPHY_PORT1,
  230. GPHY_PORT2,
  231. GPHY_PORT3,
  232. };
  233. enum calibration_mode {
  234. EFUSE_K,
  235. SW_K
  236. };
  237. enum CAL_ITEM {
  238. REXT,
  239. TX_OFFSET,
  240. TX_AMP,
  241. TX_R50,
  242. TX_VCM
  243. };
  244. enum CAL_MODE {
  245. EFUSE_M,
  246. SW_M
  247. };
  248. struct mtk_socphy_shared_priv {
  249. u32 boottrap;
  250. };
  251. static int mtk_socphy_read_page(struct phy_device *phydev)
  252. {
  253. return __phy_read(phydev, MTK_EXT_PAGE_ACCESS);
  254. }
  255. static int mtk_socphy_write_page(struct phy_device *phydev, int page)
  256. {
  257. return __phy_write(phydev, MTK_EXT_PAGE_ACCESS, page);
  258. }
  259. /* One calibration cycle consists of:
  260. * 1.Set DA_CALIN_FLAG high to start calibration. Keep it high
  261. * until AD_CAL_COMP is ready to output calibration result.
  262. * 2.Wait until DA_CAL_CLK is available.
  263. * 3.Fetch AD_CAL_COMP_OUT.
  264. */
  265. static int cal_cycle(struct phy_device *phydev, int devad,
  266. u32 regnum, u16 mask, u16 cal_val)
  267. {
  268. int reg_val;
  269. int ret;
  270. phy_modify_mmd(phydev, devad, regnum,
  271. mask, cal_val);
  272. phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
  273. MTK_PHY_DA_CALIN_FLAG);
  274. ret = phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
  275. MTK_PHY_RG_AD_CAL_CLK, reg_val,
  276. reg_val & MTK_PHY_DA_CAL_CLK, 500,
  277. ANALOG_INTERNAL_OPERATION_MAX_US, false);
  278. if (ret) {
  279. phydev_err(phydev, "Calibration cycle timeout\n");
  280. return ret;
  281. }
  282. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CALIN,
  283. MTK_PHY_DA_CALIN_FLAG);
  284. ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_AD_CAL_COMP) >>
  285. MTK_PHY_AD_CAL_COMP_OUT_SHIFT;
  286. phydev_dbg(phydev, "cal_val: 0x%x, ret: %d\n", cal_val, ret);
  287. return ret;
  288. }
  289. static int rext_fill_result(struct phy_device *phydev, u16 *buf)
  290. {
  291. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG5,
  292. MTK_PHY_RG_REXT_TRIM_MASK, buf[0] << 8);
  293. phy_modify_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_RG_BG_RASEL,
  294. MTK_PHY_RG_BG_RASEL_MASK, buf[1]);
  295. return 0;
  296. }
  297. static int rext_cal_efuse(struct phy_device *phydev, u32 *buf)
  298. {
  299. u16 rext_cal_val[2];
  300. rext_cal_val[0] = EFS_RG_REXT_TRIM(buf[3]);
  301. rext_cal_val[1] = EFS_RG_BG_RASEL(buf[3]);
  302. rext_fill_result(phydev, rext_cal_val);
  303. return 0;
  304. }
  305. static int tx_offset_fill_result(struct phy_device *phydev, u16 *buf)
  306. {
  307. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
  308. MTK_PHY_CR_TX_AMP_OFFSET_A_MASK, buf[0] << 8);
  309. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_A_B,
  310. MTK_PHY_CR_TX_AMP_OFFSET_B_MASK, buf[1]);
  311. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
  312. MTK_PHY_CR_TX_AMP_OFFSET_C_MASK, buf[2] << 8);
  313. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_CR_TX_AMP_OFFSET_C_D,
  314. MTK_PHY_CR_TX_AMP_OFFSET_D_MASK, buf[3]);
  315. return 0;
  316. }
  317. static int tx_offset_cal_efuse(struct phy_device *phydev, u32 *buf)
  318. {
  319. u16 tx_offset_cal_val[4];
  320. tx_offset_cal_val[0] = EFS_DA_TX_AMP_OFFSET_A(buf[0]);
  321. tx_offset_cal_val[1] = EFS_DA_TX_AMP_OFFSET_B(buf[1]);
  322. tx_offset_cal_val[2] = EFS_DA_TX_AMP_OFFSET_C(buf[1]);
  323. tx_offset_cal_val[3] = EFS_DA_TX_AMP_OFFSET_D(buf[1]);
  324. tx_offset_fill_result(phydev, tx_offset_cal_val);
  325. return 0;
  326. }
  327. static int tx_amp_fill_result(struct phy_device *phydev, u16 *buf)
  328. {
  329. int i;
  330. int bias[16] = {};
  331. const int vals_9461[16] = { 7, 1, 4, 7,
  332. 7, 1, 4, 7,
  333. 7, 1, 4, 7,
  334. 7, 1, 4, 7 };
  335. const int vals_9481[16] = { 10, 6, 6, 10,
  336. 10, 6, 6, 10,
  337. 10, 6, 6, 10,
  338. 10, 6, 6, 10 };
  339. switch (phydev->drv->phy_id) {
  340. case MTK_GPHY_ID_MT7981:
  341. /* We add some calibration to efuse values
  342. * due to board level influence.
  343. * GBE: +7, TBT: +1, HBT: +4, TST: +7
  344. */
  345. memcpy(bias, (const void *)vals_9461, sizeof(bias));
  346. break;
  347. case MTK_GPHY_ID_MT7988:
  348. memcpy(bias, (const void *)vals_9481, sizeof(bias));
  349. break;
  350. }
  351. /* Prevent overflow */
  352. for (i = 0; i < 12; i++) {
  353. if (buf[i >> 2] + bias[i] > 63) {
  354. buf[i >> 2] = 63;
  355. bias[i] = 0;
  356. }
  357. }
  358. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
  359. MTK_PHY_DA_TX_I2MPB_A_GBE_MASK, (buf[0] + bias[0]) << 10);
  360. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TXVLD_DA_RG,
  361. MTK_PHY_DA_TX_I2MPB_A_TBT_MASK, buf[0] + bias[1]);
  362. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
  363. MTK_PHY_DA_TX_I2MPB_A_HBT_MASK, (buf[0] + bias[2]) << 10);
  364. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_A2,
  365. MTK_PHY_DA_TX_I2MPB_A_TST_MASK, buf[0] + bias[3]);
  366. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
  367. MTK_PHY_DA_TX_I2MPB_B_GBE_MASK, (buf[1] + bias[4]) << 8);
  368. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B1,
  369. MTK_PHY_DA_TX_I2MPB_B_TBT_MASK, buf[1] + bias[5]);
  370. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
  371. MTK_PHY_DA_TX_I2MPB_B_HBT_MASK, (buf[1] + bias[6]) << 8);
  372. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_B2,
  373. MTK_PHY_DA_TX_I2MPB_B_TST_MASK, buf[1] + bias[7]);
  374. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
  375. MTK_PHY_DA_TX_I2MPB_C_GBE_MASK, (buf[2] + bias[8]) << 8);
  376. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C1,
  377. MTK_PHY_DA_TX_I2MPB_C_TBT_MASK, buf[2] + bias[9]);
  378. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
  379. MTK_PHY_DA_TX_I2MPB_C_HBT_MASK, (buf[2] + bias[10]) << 8);
  380. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_C2,
  381. MTK_PHY_DA_TX_I2MPB_C_TST_MASK, buf[2] + bias[11]);
  382. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
  383. MTK_PHY_DA_TX_I2MPB_D_GBE_MASK, (buf[3] + bias[12]) << 8);
  384. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D1,
  385. MTK_PHY_DA_TX_I2MPB_D_TBT_MASK, buf[3] + bias[13]);
  386. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
  387. MTK_PHY_DA_TX_I2MPB_D_HBT_MASK, (buf[3] + bias[14]) << 8);
  388. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_TX_I2MPB_TEST_MODE_D2,
  389. MTK_PHY_DA_TX_I2MPB_D_TST_MASK, buf[3] + bias[15]);
  390. return 0;
  391. }
  392. static int tx_amp_cal_efuse(struct phy_device *phydev, u32 *buf)
  393. {
  394. u16 tx_amp_cal_val[4];
  395. tx_amp_cal_val[0] = EFS_DA_TX_I2MPB_A(buf[0]);
  396. tx_amp_cal_val[1] = EFS_DA_TX_I2MPB_B(buf[0]);
  397. tx_amp_cal_val[2] = EFS_DA_TX_I2MPB_C(buf[0]);
  398. tx_amp_cal_val[3] = EFS_DA_TX_I2MPB_D(buf[0]);
  399. tx_amp_fill_result(phydev, tx_amp_cal_val);
  400. return 0;
  401. }
  402. static int tx_r50_fill_result(struct phy_device *phydev, u16 tx_r50_cal_val,
  403. u8 txg_calen_x)
  404. {
  405. int bias = 0;
  406. u16 reg, val;
  407. if (phydev->drv->phy_id == MTK_GPHY_ID_MT7988)
  408. bias = -2;
  409. val = clamp_val(bias + tx_r50_cal_val, 0, 63);
  410. switch (txg_calen_x) {
  411. case PAIR_A:
  412. reg = MTK_PHY_DA_TX_R50_PAIR_A;
  413. break;
  414. case PAIR_B:
  415. reg = MTK_PHY_DA_TX_R50_PAIR_B;
  416. break;
  417. case PAIR_C:
  418. reg = MTK_PHY_DA_TX_R50_PAIR_C;
  419. break;
  420. case PAIR_D:
  421. reg = MTK_PHY_DA_TX_R50_PAIR_D;
  422. break;
  423. default:
  424. return -EINVAL;
  425. }
  426. phy_write_mmd(phydev, MDIO_MMD_VEND1, reg, val | val << 8);
  427. return 0;
  428. }
  429. static int tx_r50_cal_efuse(struct phy_device *phydev, u32 *buf,
  430. u8 txg_calen_x)
  431. {
  432. u16 tx_r50_cal_val;
  433. switch (txg_calen_x) {
  434. case PAIR_A:
  435. tx_r50_cal_val = EFS_DA_TX_R50_A(buf[1]);
  436. break;
  437. case PAIR_B:
  438. tx_r50_cal_val = EFS_DA_TX_R50_B(buf[1]);
  439. break;
  440. case PAIR_C:
  441. tx_r50_cal_val = EFS_DA_TX_R50_C(buf[2]);
  442. break;
  443. case PAIR_D:
  444. tx_r50_cal_val = EFS_DA_TX_R50_D(buf[2]);
  445. break;
  446. default:
  447. return -EINVAL;
  448. }
  449. tx_r50_fill_result(phydev, tx_r50_cal_val, txg_calen_x);
  450. return 0;
  451. }
  452. static int tx_vcm_cal_sw(struct phy_device *phydev, u8 rg_txreserve_x)
  453. {
  454. u8 lower_idx, upper_idx, txreserve_val;
  455. u8 lower_ret, upper_ret;
  456. int ret;
  457. phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
  458. MTK_PHY_RG_ANA_CALEN);
  459. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
  460. MTK_PHY_RG_CAL_CKINV);
  461. phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
  462. MTK_PHY_RG_TXVOS_CALEN);
  463. switch (rg_txreserve_x) {
  464. case PAIR_A:
  465. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
  466. MTK_PHY_RG_DASN_DAC_IN0_A,
  467. MTK_PHY_DASN_DAC_IN0_A_MASK);
  468. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
  469. MTK_PHY_RG_DASN_DAC_IN1_A,
  470. MTK_PHY_DASN_DAC_IN1_A_MASK);
  471. phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
  472. MTK_PHY_RG_ANA_CAL_RG0,
  473. MTK_PHY_RG_ZCALEN_A);
  474. break;
  475. case PAIR_B:
  476. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
  477. MTK_PHY_RG_DASN_DAC_IN0_B,
  478. MTK_PHY_DASN_DAC_IN0_B_MASK);
  479. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
  480. MTK_PHY_RG_DASN_DAC_IN1_B,
  481. MTK_PHY_DASN_DAC_IN1_B_MASK);
  482. phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
  483. MTK_PHY_RG_ANA_CAL_RG1,
  484. MTK_PHY_RG_ZCALEN_B);
  485. break;
  486. case PAIR_C:
  487. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
  488. MTK_PHY_RG_DASN_DAC_IN0_C,
  489. MTK_PHY_DASN_DAC_IN0_C_MASK);
  490. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
  491. MTK_PHY_RG_DASN_DAC_IN1_C,
  492. MTK_PHY_DASN_DAC_IN1_C_MASK);
  493. phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
  494. MTK_PHY_RG_ANA_CAL_RG1,
  495. MTK_PHY_RG_ZCALEN_C);
  496. break;
  497. case PAIR_D:
  498. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
  499. MTK_PHY_RG_DASN_DAC_IN0_D,
  500. MTK_PHY_DASN_DAC_IN0_D_MASK);
  501. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
  502. MTK_PHY_RG_DASN_DAC_IN1_D,
  503. MTK_PHY_DASN_DAC_IN1_D_MASK);
  504. phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
  505. MTK_PHY_RG_ANA_CAL_RG1,
  506. MTK_PHY_RG_ZCALEN_D);
  507. break;
  508. default:
  509. ret = -EINVAL;
  510. goto restore;
  511. }
  512. lower_idx = TXRESERVE_MIN;
  513. upper_idx = TXRESERVE_MAX;
  514. phydev_dbg(phydev, "Start TX-VCM SW cal.\n");
  515. while ((upper_idx - lower_idx) > 1) {
  516. txreserve_val = DIV_ROUND_CLOSEST(lower_idx + upper_idx, 2);
  517. ret = cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
  518. MTK_PHY_DA_RX_PSBN_TBT_MASK |
  519. MTK_PHY_DA_RX_PSBN_HBT_MASK |
  520. MTK_PHY_DA_RX_PSBN_GBE_MASK |
  521. MTK_PHY_DA_RX_PSBN_LP_MASK,
  522. txreserve_val << 12 | txreserve_val << 8 |
  523. txreserve_val << 4 | txreserve_val);
  524. if (ret == 1) {
  525. upper_idx = txreserve_val;
  526. upper_ret = ret;
  527. } else if (ret == 0) {
  528. lower_idx = txreserve_val;
  529. lower_ret = ret;
  530. } else {
  531. goto restore;
  532. }
  533. }
  534. if (lower_idx == TXRESERVE_MIN) {
  535. lower_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
  536. MTK_PHY_RXADC_CTRL_RG9,
  537. MTK_PHY_DA_RX_PSBN_TBT_MASK |
  538. MTK_PHY_DA_RX_PSBN_HBT_MASK |
  539. MTK_PHY_DA_RX_PSBN_GBE_MASK |
  540. MTK_PHY_DA_RX_PSBN_LP_MASK,
  541. lower_idx << 12 | lower_idx << 8 |
  542. lower_idx << 4 | lower_idx);
  543. ret = lower_ret;
  544. } else if (upper_idx == TXRESERVE_MAX) {
  545. upper_ret = cal_cycle(phydev, MDIO_MMD_VEND1,
  546. MTK_PHY_RXADC_CTRL_RG9,
  547. MTK_PHY_DA_RX_PSBN_TBT_MASK |
  548. MTK_PHY_DA_RX_PSBN_HBT_MASK |
  549. MTK_PHY_DA_RX_PSBN_GBE_MASK |
  550. MTK_PHY_DA_RX_PSBN_LP_MASK,
  551. upper_idx << 12 | upper_idx << 8 |
  552. upper_idx << 4 | upper_idx);
  553. ret = upper_ret;
  554. }
  555. if (ret < 0)
  556. goto restore;
  557. /* We calibrate TX-VCM in different logic. Check upper index and then
  558. * lower index. If this calibration is valid, apply lower index's result.
  559. */
  560. ret = upper_ret - lower_ret;
  561. if (ret == 1) {
  562. ret = 0;
  563. /* Make sure we use upper_idx in our calibration system */
  564. cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
  565. MTK_PHY_DA_RX_PSBN_TBT_MASK |
  566. MTK_PHY_DA_RX_PSBN_HBT_MASK |
  567. MTK_PHY_DA_RX_PSBN_GBE_MASK |
  568. MTK_PHY_DA_RX_PSBN_LP_MASK,
  569. upper_idx << 12 | upper_idx << 8 |
  570. upper_idx << 4 | upper_idx);
  571. phydev_dbg(phydev, "TX-VCM SW cal result: 0x%x\n", upper_idx);
  572. } else if (lower_idx == TXRESERVE_MIN && upper_ret == 1 &&
  573. lower_ret == 1) {
  574. ret = 0;
  575. cal_cycle(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG9,
  576. MTK_PHY_DA_RX_PSBN_TBT_MASK |
  577. MTK_PHY_DA_RX_PSBN_HBT_MASK |
  578. MTK_PHY_DA_RX_PSBN_GBE_MASK |
  579. MTK_PHY_DA_RX_PSBN_LP_MASK,
  580. lower_idx << 12 | lower_idx << 8 |
  581. lower_idx << 4 | lower_idx);
  582. phydev_warn(phydev, "TX-VCM SW cal result at low margin 0x%x\n",
  583. lower_idx);
  584. } else if (upper_idx == TXRESERVE_MAX && upper_ret == 0 &&
  585. lower_ret == 0) {
  586. ret = 0;
  587. phydev_warn(phydev, "TX-VCM SW cal result at high margin 0x%x\n",
  588. upper_idx);
  589. } else {
  590. ret = -EINVAL;
  591. }
  592. restore:
  593. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
  594. MTK_PHY_RG_ANA_CALEN);
  595. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
  596. MTK_PHY_RG_TXVOS_CALEN);
  597. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG0,
  598. MTK_PHY_RG_ZCALEN_A);
  599. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_ANA_CAL_RG1,
  600. MTK_PHY_RG_ZCALEN_B | MTK_PHY_RG_ZCALEN_C |
  601. MTK_PHY_RG_ZCALEN_D);
  602. return ret;
  603. }
  604. static void mt798x_phy_common_finetune(struct phy_device *phydev)
  605. {
  606. phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
  607. /* EnabRandUpdTrig = 1 */
  608. __phy_write(phydev, 0x11, 0x2f00);
  609. __phy_write(phydev, 0x12, 0xe);
  610. __phy_write(phydev, 0x10, 0x8fb0);
  611. /* NormMseLoThresh = 85 */
  612. __phy_write(phydev, 0x11, 0x55a0);
  613. __phy_write(phydev, 0x12, 0x0);
  614. __phy_write(phydev, 0x10, 0x83aa);
  615. /* TrFreeze = 0 */
  616. __phy_write(phydev, 0x11, 0x0);
  617. __phy_write(phydev, 0x12, 0x0);
  618. __phy_write(phydev, 0x10, 0x9686);
  619. /* SSTrKp1000Slv = 5 */
  620. __phy_write(phydev, 0x11, 0xbaef);
  621. __phy_write(phydev, 0x12, 0x2e);
  622. __phy_write(phydev, 0x10, 0x968c);
  623. /* MrvlTrFix100Kp = 3, MrvlTrFix100Kf = 2,
  624. * MrvlTrFix1000Kp = 3, MrvlTrFix1000Kf = 2
  625. */
  626. __phy_write(phydev, 0x11, 0xd10a);
  627. __phy_write(phydev, 0x12, 0x34);
  628. __phy_write(phydev, 0x10, 0x8f82);
  629. /* VcoSlicerThreshBitsHigh */
  630. __phy_write(phydev, 0x11, 0x5555);
  631. __phy_write(phydev, 0x12, 0x55);
  632. __phy_write(phydev, 0x10, 0x8ec0);
  633. phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
  634. /* TR_OPEN_LOOP_EN = 1, lpf_x_average = 9*/
  635. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG234,
  636. MTK_PHY_TR_OPEN_LOOP_EN_MASK | MTK_PHY_LPF_X_AVERAGE_MASK,
  637. BIT(0) | FIELD_PREP(MTK_PHY_LPF_X_AVERAGE_MASK, 0x9));
  638. /* rg_tr_lpf_cnt_val = 512 */
  639. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LPF_CNT_VAL, 0x200);
  640. /* IIR2 related */
  641. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_L, 0x82);
  642. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K1_U, 0x0);
  643. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_L, 0x103);
  644. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K2_U, 0x0);
  645. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_L, 0x82);
  646. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K3_U, 0x0);
  647. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_L, 0xd177);
  648. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K4_U, 0x3);
  649. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_L, 0x2c82);
  650. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_LP_IIR2_K5_U, 0xe);
  651. /* FFE peaking */
  652. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27C,
  653. MTK_PHY_VGASTATE_FFE_THR_ST1_MASK, 0x1b << 8);
  654. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG27D,
  655. MTK_PHY_VGASTATE_FFE_THR_ST2_MASK, 0x1e);
  656. /* Disable LDO pump */
  657. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRAB, 0x0);
  658. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_PUMP_EN_PAIRCD, 0x0);
  659. /* Adjust LDO output voltage */
  660. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_LDO_OUTPUT_V, 0x2222);
  661. }
  662. static void mt7981_phy_finetune(struct phy_device *phydev)
  663. {
  664. u16 val[8] = { 0x01ce, 0x01c1,
  665. 0x020f, 0x0202,
  666. 0x03d0, 0x03c0,
  667. 0x0013, 0x0005 };
  668. int i, k;
  669. /* 100M eye finetune:
  670. * Keep middle level of TX MLT3 shapper as default.
  671. * Only change TX MLT3 overshoot level here.
  672. */
  673. for (k = 0, i = 1; i < 12; i++) {
  674. if (i % 3 == 0)
  675. continue;
  676. phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[k++]);
  677. }
  678. phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
  679. /* SlvDSPreadyTime = 24, MasDSPreadyTime = 24 */
  680. __phy_write(phydev, 0x11, 0xc71);
  681. __phy_write(phydev, 0x12, 0xc);
  682. __phy_write(phydev, 0x10, 0x8fae);
  683. /* ResetSyncOffset = 6 */
  684. __phy_write(phydev, 0x11, 0x600);
  685. __phy_write(phydev, 0x12, 0x0);
  686. __phy_write(phydev, 0x10, 0x8fc0);
  687. /* VgaDecRate = 1 */
  688. __phy_write(phydev, 0x11, 0x4c2a);
  689. __phy_write(phydev, 0x12, 0x3e);
  690. __phy_write(phydev, 0x10, 0x8fa4);
  691. /* FfeUpdGainForce = 4 */
  692. __phy_write(phydev, 0x11, 0x240);
  693. __phy_write(phydev, 0x12, 0x0);
  694. __phy_write(phydev, 0x10, 0x9680);
  695. phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
  696. }
  697. static void mt7988_phy_finetune(struct phy_device *phydev)
  698. {
  699. u16 val[12] = { 0x0187, 0x01cd, 0x01c8, 0x0182,
  700. 0x020d, 0x0206, 0x0384, 0x03d0,
  701. 0x03c6, 0x030a, 0x0011, 0x0005 };
  702. int i;
  703. /* Set default MLT3 shaper first */
  704. for (i = 0; i < 12; i++)
  705. phy_write_mmd(phydev, MDIO_MMD_VEND1, i, val[i]);
  706. /* TCT finetune */
  707. phy_write_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_TX_FILTER, 0x5);
  708. /* Disable TX power saving */
  709. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RXADC_CTRL_RG7,
  710. MTK_PHY_DA_AD_BUF_BIAS_LP_MASK, 0x3 << 8);
  711. phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
  712. /* SlvDSPreadyTime = 24, MasDSPreadyTime = 12 */
  713. __phy_write(phydev, 0x11, 0x671);
  714. __phy_write(phydev, 0x12, 0xc);
  715. __phy_write(phydev, 0x10, 0x8fae);
  716. /* ResetSyncOffset = 5 */
  717. __phy_write(phydev, 0x11, 0x500);
  718. __phy_write(phydev, 0x12, 0x0);
  719. __phy_write(phydev, 0x10, 0x8fc0);
  720. /* VgaDecRate is 1 at default on mt7988 */
  721. phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
  722. phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_2A30);
  723. /* TxClkOffset = 2 */
  724. __phy_modify(phydev, MTK_PHY_ANARG_RG, MTK_PHY_TCLKOFFSET_MASK,
  725. FIELD_PREP(MTK_PHY_TCLKOFFSET_MASK, 0x2));
  726. phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
  727. }
  728. static void mt798x_phy_eee(struct phy_device *phydev)
  729. {
  730. phy_modify_mmd(phydev, MDIO_MMD_VEND1,
  731. MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG120,
  732. MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK |
  733. MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK,
  734. FIELD_PREP(MTK_PHY_LPI_SIG_EN_LO_THRESH1000_MASK, 0x0) |
  735. FIELD_PREP(MTK_PHY_LPI_SIG_EN_HI_THRESH1000_MASK, 0x14));
  736. phy_modify_mmd(phydev, MDIO_MMD_VEND1,
  737. MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
  738. MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
  739. FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
  740. 0xff));
  741. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
  742. MTK_PHY_RG_TESTMUX_ADC_CTRL,
  743. MTK_PHY_RG_TXEN_DIG_MASK);
  744. phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
  745. MTK_PHY_RG_DEV1E_REG19b, MTK_PHY_BYPASS_DSP_LPI_READY);
  746. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
  747. MTK_PHY_RG_DEV1E_REG234, MTK_PHY_TR_LP_IIR_EEE_EN);
  748. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG238,
  749. MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK |
  750. MTK_PHY_LPI_SLV_SEND_TX_EN,
  751. FIELD_PREP(MTK_PHY_LPI_SLV_SEND_TX_TIMER_MASK, 0x120));
  752. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG239,
  753. MTK_PHY_LPI_SEND_LOC_TIMER_MASK |
  754. MTK_PHY_LPI_TXPCS_LOC_RCV,
  755. FIELD_PREP(MTK_PHY_LPI_SEND_LOC_TIMER_MASK, 0x117));
  756. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2C7,
  757. MTK_PHY_MAX_GAIN_MASK | MTK_PHY_MIN_GAIN_MASK,
  758. FIELD_PREP(MTK_PHY_MAX_GAIN_MASK, 0x8) |
  759. FIELD_PREP(MTK_PHY_MIN_GAIN_MASK, 0x13));
  760. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG2D1,
  761. MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
  762. FIELD_PREP(MTK_PHY_VCO_SLICER_THRESH_BITS_HIGH_EEE_MASK,
  763. 0x33) |
  764. MTK_PHY_LPI_SKIP_SD_SLV_TR | MTK_PHY_LPI_TR_READY |
  765. MTK_PHY_LPI_VCO_EEE_STG0_EN);
  766. phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG323,
  767. MTK_PHY_EEE_WAKE_MAS_INT_DC |
  768. MTK_PHY_EEE_WAKE_SLV_INT_DC);
  769. phy_modify_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG324,
  770. MTK_PHY_SMI_DETCNT_MAX_MASK,
  771. FIELD_PREP(MTK_PHY_SMI_DETCNT_MAX_MASK, 0x3f) |
  772. MTK_PHY_SMI_DET_MAX_EN);
  773. phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, MTK_PHY_RG_DEV1E_REG326,
  774. MTK_PHY_LPI_MODE_SD_ON | MTK_PHY_RESET_RANDUPD_CNT |
  775. MTK_PHY_TREC_UPDATE_ENAB_CLR |
  776. MTK_PHY_LPI_QUIT_WAIT_DFE_SIG_DET_OFF |
  777. MTK_PHY_TR_READY_SKIP_AFE_WAKEUP);
  778. phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_52B5);
  779. /* Regsigdet_sel_1000 = 0 */
  780. __phy_write(phydev, 0x11, 0xb);
  781. __phy_write(phydev, 0x12, 0x0);
  782. __phy_write(phydev, 0x10, 0x9690);
  783. /* REG_EEE_st2TrKf1000 = 3 */
  784. __phy_write(phydev, 0x11, 0x114f);
  785. __phy_write(phydev, 0x12, 0x2);
  786. __phy_write(phydev, 0x10, 0x969a);
  787. /* RegEEE_slv_wake_tr_timer_tar = 6, RegEEE_slv_remtx_timer_tar = 20 */
  788. __phy_write(phydev, 0x11, 0x3028);
  789. __phy_write(phydev, 0x12, 0x0);
  790. __phy_write(phydev, 0x10, 0x969e);
  791. /* RegEEE_slv_wake_int_timer_tar = 8 */
  792. __phy_write(phydev, 0x11, 0x5010);
  793. __phy_write(phydev, 0x12, 0x0);
  794. __phy_write(phydev, 0x10, 0x96a0);
  795. /* RegEEE_trfreeze_timer2 = 586 */
  796. __phy_write(phydev, 0x11, 0x24a);
  797. __phy_write(phydev, 0x12, 0x0);
  798. __phy_write(phydev, 0x10, 0x96a8);
  799. /* RegEEE100Stg1_tar = 16 */
  800. __phy_write(phydev, 0x11, 0x3210);
  801. __phy_write(phydev, 0x12, 0x0);
  802. __phy_write(phydev, 0x10, 0x96b8);
  803. /* REGEEE_wake_slv_tr_wait_dfesigdet_en = 1 */
  804. __phy_write(phydev, 0x11, 0x1463);
  805. __phy_write(phydev, 0x12, 0x0);
  806. __phy_write(phydev, 0x10, 0x96ca);
  807. /* DfeTailEnableVgaThresh1000 = 27 */
  808. __phy_write(phydev, 0x11, 0x36);
  809. __phy_write(phydev, 0x12, 0x0);
  810. __phy_write(phydev, 0x10, 0x8f80);
  811. phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
  812. phy_select_page(phydev, MTK_PHY_PAGE_EXTENDED_3);
  813. __phy_modify(phydev, MTK_PHY_LPI_REG_14, MTK_PHY_LPI_WAKE_TIMER_1000_MASK,
  814. FIELD_PREP(MTK_PHY_LPI_WAKE_TIMER_1000_MASK, 0x19c));
  815. __phy_modify(phydev, MTK_PHY_LPI_REG_1c, MTK_PHY_SMI_DET_ON_THRESH_MASK,
  816. FIELD_PREP(MTK_PHY_SMI_DET_ON_THRESH_MASK, 0xc));
  817. phy_restore_page(phydev, MTK_PHY_PAGE_STANDARD, 0);
  818. phy_modify_mmd(phydev, MDIO_MMD_VEND1,
  819. MTK_PHY_RG_LPI_PCS_DSP_CTRL_REG122,
  820. MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK,
  821. FIELD_PREP(MTK_PHY_LPI_NORM_MSE_HI_THRESH1000_MASK, 0xff));
  822. }
  823. static int cal_sw(struct phy_device *phydev, enum CAL_ITEM cal_item,
  824. u8 start_pair, u8 end_pair)
  825. {
  826. u8 pair_n;
  827. int ret;
  828. for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
  829. /* TX_OFFSET & TX_AMP have no SW calibration. */
  830. switch (cal_item) {
  831. case TX_VCM:
  832. ret = tx_vcm_cal_sw(phydev, pair_n);
  833. break;
  834. default:
  835. return -EINVAL;
  836. }
  837. if (ret)
  838. return ret;
  839. }
  840. return 0;
  841. }
  842. static int cal_efuse(struct phy_device *phydev, enum CAL_ITEM cal_item,
  843. u8 start_pair, u8 end_pair, u32 *buf)
  844. {
  845. u8 pair_n;
  846. int ret;
  847. for (pair_n = start_pair; pair_n <= end_pair; pair_n++) {
  848. /* TX_VCM has no efuse calibration. */
  849. switch (cal_item) {
  850. case REXT:
  851. ret = rext_cal_efuse(phydev, buf);
  852. break;
  853. case TX_OFFSET:
  854. ret = tx_offset_cal_efuse(phydev, buf);
  855. break;
  856. case TX_AMP:
  857. ret = tx_amp_cal_efuse(phydev, buf);
  858. break;
  859. case TX_R50:
  860. ret = tx_r50_cal_efuse(phydev, buf, pair_n);
  861. break;
  862. default:
  863. return -EINVAL;
  864. }
  865. if (ret)
  866. return ret;
  867. }
  868. return 0;
  869. }
  870. static int start_cal(struct phy_device *phydev, enum CAL_ITEM cal_item,
  871. enum CAL_MODE cal_mode, u8 start_pair,
  872. u8 end_pair, u32 *buf)
  873. {
  874. int ret;
  875. switch (cal_mode) {
  876. case EFUSE_M:
  877. ret = cal_efuse(phydev, cal_item, start_pair,
  878. end_pair, buf);
  879. break;
  880. case SW_M:
  881. ret = cal_sw(phydev, cal_item, start_pair, end_pair);
  882. break;
  883. default:
  884. return -EINVAL;
  885. }
  886. if (ret) {
  887. phydev_err(phydev, "cal %d failed\n", cal_item);
  888. return -EIO;
  889. }
  890. return 0;
  891. }
  892. static int mt798x_phy_calibration(struct phy_device *phydev)
  893. {
  894. int ret = 0;
  895. u32 *buf;
  896. size_t len;
  897. struct nvmem_cell *cell;
  898. cell = nvmem_cell_get(&phydev->mdio.dev, "phy-cal-data");
  899. if (IS_ERR(cell)) {
  900. if (PTR_ERR(cell) == -EPROBE_DEFER)
  901. return PTR_ERR(cell);
  902. return 0;
  903. }
  904. buf = (u32 *)nvmem_cell_read(cell, &len);
  905. if (IS_ERR(buf))
  906. return PTR_ERR(buf);
  907. nvmem_cell_put(cell);
  908. if (!buf[0] || !buf[1] || !buf[2] || !buf[3] || len < 4 * sizeof(u32)) {
  909. phydev_err(phydev, "invalid efuse data\n");
  910. ret = -EINVAL;
  911. goto out;
  912. }
  913. ret = start_cal(phydev, REXT, EFUSE_M, NO_PAIR, NO_PAIR, buf);
  914. if (ret)
  915. goto out;
  916. ret = start_cal(phydev, TX_OFFSET, EFUSE_M, NO_PAIR, NO_PAIR, buf);
  917. if (ret)
  918. goto out;
  919. ret = start_cal(phydev, TX_AMP, EFUSE_M, NO_PAIR, NO_PAIR, buf);
  920. if (ret)
  921. goto out;
  922. ret = start_cal(phydev, TX_R50, EFUSE_M, PAIR_A, PAIR_D, buf);
  923. if (ret)
  924. goto out;
  925. ret = start_cal(phydev, TX_VCM, SW_M, PAIR_A, PAIR_A, buf);
  926. if (ret)
  927. goto out;
  928. out:
  929. kfree(buf);
  930. return ret;
  931. }
  932. static int mt798x_phy_config_init(struct phy_device *phydev)
  933. {
  934. switch (phydev->drv->phy_id) {
  935. case MTK_GPHY_ID_MT7981:
  936. mt7981_phy_finetune(phydev);
  937. break;
  938. case MTK_GPHY_ID_MT7988:
  939. mt7988_phy_finetune(phydev);
  940. break;
  941. }
  942. mt798x_phy_common_finetune(phydev);
  943. mt798x_phy_eee(phydev);
  944. return mt798x_phy_calibration(phydev);
  945. }
  946. static int mt7988_phy_setup_led(struct phy_device *phydev)
  947. {
  948. struct mtk_socphy_shared_priv *priv = phydev->shared->priv;
  949. int port = phydev->mdio.addr;
  950. u32 reg = priv->boottrap;
  951. struct pinctrl *pinctrl;
  952. phy_write_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_LED0_ON_CTRL,
  953. MTK_PHY_LED0_ENABLE | MTK_PHY_LED0_POLARITY |
  954. MTK_PHY_LED0_ON_LINK10 |
  955. MTK_PHY_LED0_ON_LINK100 |
  956. MTK_PHY_LED0_ON_LINK1000);
  957. phy_write_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_LED1_ON_CTRL,
  958. MTK_PHY_LED1_ENABLE | MTK_PHY_LED1_POLARITY |
  959. MTK_PHY_LED1_ON_LINK10 |
  960. MTK_PHY_LED1_ON_LINK100 |
  961. MTK_PHY_LED1_ON_LINK1000);
  962. if ((port == GPHY_PORT0 && reg & BIT(8)) ||
  963. (port == GPHY_PORT1 && reg & BIT(9)) ||
  964. (port == GPHY_PORT2 && reg & BIT(10)) ||
  965. (port == GPHY_PORT3 && reg & BIT(11))) {
  966. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_LED0_ON_CTRL,
  967. MTK_PHY_LED0_POLARITY);
  968. phy_clear_bits_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_LED1_ON_CTRL,
  969. MTK_PHY_LED1_POLARITY);
  970. }
  971. phy_write_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_LED0_BLINK_CTRL,
  972. MTK_PHY_LED0_1000TX | MTK_PHY_LED0_1000RX |
  973. MTK_PHY_LED0_100TX | MTK_PHY_LED0_100RX |
  974. MTK_PHY_LED0_10TX | MTK_PHY_LED0_10RX);
  975. phy_write_mmd(phydev, MDIO_MMD_VEND2, MTK_PHY_LED1_BLINK_CTRL,
  976. MTK_PHY_LED1_1000TX | MTK_PHY_LED1_1000RX |
  977. MTK_PHY_LED1_100TX | MTK_PHY_LED1_100RX |
  978. MTK_PHY_LED1_10TX | MTK_PHY_LED1_10RX);
  979. pinctrl = devm_pinctrl_get_select(&phydev->mdio.dev, "gbe-led");
  980. if (IS_ERR(pinctrl)) {
  981. dev_err(&phydev->mdio.bus->dev, "Failed to setup LED pins\n");
  982. return PTR_ERR(pinctrl);
  983. }
  984. return 0;
  985. }
  986. static int mt7988_phy_probe_shared(struct phy_device *phydev)
  987. {
  988. struct mtk_socphy_shared_priv *priv = phydev->shared->priv;
  989. void __iomem *boottrap;
  990. struct device_node *np;
  991. u32 reg;
  992. np = of_find_compatible_node(NULL, NULL, "mediatek,boottrap");
  993. if (!np)
  994. return -ENOENT;
  995. boottrap = of_iomap(np, 0);
  996. if (!boottrap)
  997. return -ENOMEM;
  998. reg = readl(boottrap);
  999. iounmap(boottrap);
  1000. priv->boottrap = reg;
  1001. return 0;
  1002. }
  1003. static int mt7981_phy_probe(struct phy_device *phydev)
  1004. {
  1005. return mt798x_phy_calibration(phydev);
  1006. }
  1007. static int mt7988_phy_probe(struct phy_device *phydev)
  1008. {
  1009. int err;
  1010. err = devm_phy_package_join(&phydev->mdio.dev, phydev, 0,
  1011. sizeof(struct mtk_socphy_shared_priv));
  1012. if (err)
  1013. return err;
  1014. if (phy_package_probe_once(phydev)) {
  1015. err = mt7988_phy_probe_shared(phydev);
  1016. if (err)
  1017. return err;
  1018. }
  1019. mt7988_phy_setup_led(phydev);
  1020. return mt798x_phy_calibration(phydev);
  1021. }
  1022. static struct phy_driver mtk_socphy_driver[] = {
  1023. {
  1024. PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981),
  1025. .name = "MediaTek MT7981 PHY",
  1026. .config_init = mt798x_phy_config_init,
  1027. .config_intr = genphy_no_config_intr,
  1028. .handle_interrupt = genphy_handle_interrupt_no_ack,
  1029. .probe = mt7981_phy_probe,
  1030. .suspend = genphy_suspend,
  1031. .resume = genphy_resume,
  1032. .read_page = mtk_socphy_read_page,
  1033. .write_page = mtk_socphy_write_page,
  1034. },
  1035. {
  1036. PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988),
  1037. .name = "MediaTek MT7988 PHY",
  1038. .config_init = mt798x_phy_config_init,
  1039. .config_intr = genphy_no_config_intr,
  1040. .handle_interrupt = genphy_handle_interrupt_no_ack,
  1041. .probe = mt7988_phy_probe,
  1042. .suspend = genphy_suspend,
  1043. .resume = genphy_resume,
  1044. .read_page = mtk_socphy_read_page,
  1045. .write_page = mtk_socphy_write_page,
  1046. },
  1047. };
  1048. module_phy_driver(mtk_socphy_driver);
  1049. static struct mdio_device_id __maybe_unused mtk_socphy_tbl[] = {
  1050. { PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7981) },
  1051. { PHY_ID_MATCH_EXACT(MTK_GPHY_ID_MT7988) },
  1052. { }
  1053. };
  1054. MODULE_DESCRIPTION("MediaTek SoC Gigabit Ethernet PHY driver");
  1055. MODULE_AUTHOR("Daniel Golle <[email protected]>");
  1056. MODULE_AUTHOR("SkyLake Huang <[email protected]>");
  1057. MODULE_LICENSE("GPL");
  1058. MODULE_DEVICE_TABLE(mdio, mtk_socphy_tbl);