rtl838x.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. #include <asm/mach-rtl838x/mach-rtl83xx.h>
  3. #include <linux/etherdevice.h>
  4. #include <linux/iopoll.h>
  5. #include <net/nexthop.h>
  6. #include "rtl83xx.h"
  7. #define RTL838X_VLAN_PORT_TAG_STS_UNTAG 0x0
  8. #define RTL838X_VLAN_PORT_TAG_STS_TAGGED 0x1
  9. #define RTL838X_VLAN_PORT_TAG_STS_PRIORITY_TAGGED 0x2
  10. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_BASE 0xA530
  11. /* port 0-28 */
  12. #define RTL838X_VLAN_PORT_TAG_STS_CTRL(port) \
  13. RTL838X_VLAN_PORT_TAG_STS_CTRL_BASE + (port << 2)
  14. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_EGR_P_OTAG_KEEP_MASK GENMASK(11,10)
  15. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_EGR_P_ITAG_KEEP_MASK GENMASK(9,8)
  16. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_IGR_P_OTAG_KEEP_MASK GENMASK(7,6)
  17. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_IGR_P_ITAG_KEEP_MASK GENMASK(5,4)
  18. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK GENMASK(3,2)
  19. #define RTL838X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK GENMASK(1,0)
  20. extern struct mutex smi_lock;
  21. /* see_dal_maple_acl_log2PhyTmplteField and src/app/diag_v2/src/diag_acl.c */
  22. /* Definition of the RTL838X-specific template field IDs as used in the PIE */
  23. enum template_field_id {
  24. TEMPLATE_FIELD_SPMMASK = 0,
  25. TEMPLATE_FIELD_SPM0 = 1, /* Source portmask ports 0-15 */
  26. TEMPLATE_FIELD_SPM1 = 2, /* Source portmask ports 16-28 */
  27. TEMPLATE_FIELD_RANGE_CHK = 3,
  28. TEMPLATE_FIELD_DMAC0 = 4, /* Destination MAC [15:0] */
  29. TEMPLATE_FIELD_DMAC1 = 5, /* Destination MAC [31:16] */
  30. TEMPLATE_FIELD_DMAC2 = 6, /* Destination MAC [47:32] */
  31. TEMPLATE_FIELD_SMAC0 = 7, /* Source MAC [15:0] */
  32. TEMPLATE_FIELD_SMAC1 = 8, /* Source MAC [31:16] */
  33. TEMPLATE_FIELD_SMAC2 = 9, /* Source MAC [47:32] */
  34. TEMPLATE_FIELD_ETHERTYPE = 10, /* Ethernet typ */
  35. TEMPLATE_FIELD_OTAG = 11, /* Outer VLAN tag */
  36. TEMPLATE_FIELD_ITAG = 12, /* Inner VLAN tag */
  37. TEMPLATE_FIELD_SIP0 = 13, /* IPv4 or IPv6 source IP[15:0] or ARP/RARP */
  38. /* source protocol address in header */
  39. TEMPLATE_FIELD_SIP1 = 14, /* IPv4 or IPv6 source IP[31:16] or ARP/RARP */
  40. TEMPLATE_FIELD_DIP0 = 15, /* IPv4 or IPv6 destination IP[15:0] */
  41. TEMPLATE_FIELD_DIP1 = 16, /* IPv4 or IPv6 destination IP[31:16] */
  42. TEMPLATE_FIELD_IP_TOS_PROTO = 17, /* IPv4 TOS/IPv6 traffic class and */
  43. /* IPv4 proto/IPv6 next header fields */
  44. TEMPLATE_FIELD_L34_HEADER = 18, /* packet with extra tag and IPv6 with auth, dest, */
  45. /* frag, route, hop-by-hop option header, */
  46. /* IGMP type, TCP flag */
  47. TEMPLATE_FIELD_L4_SPORT = 19, /* TCP/UDP source port */
  48. TEMPLATE_FIELD_L4_DPORT = 20, /* TCP/UDP destination port */
  49. TEMPLATE_FIELD_ICMP_IGMP = 21,
  50. TEMPLATE_FIELD_IP_RANGE = 22,
  51. TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 23, /* Field selector mask */
  52. TEMPLATE_FIELD_FIELD_SELECTOR_0 = 24,
  53. TEMPLATE_FIELD_FIELD_SELECTOR_1 = 25,
  54. TEMPLATE_FIELD_FIELD_SELECTOR_2 = 26,
  55. TEMPLATE_FIELD_FIELD_SELECTOR_3 = 27,
  56. TEMPLATE_FIELD_SIP2 = 28, /* IPv6 source IP[47:32] */
  57. TEMPLATE_FIELD_SIP3 = 29, /* IPv6 source IP[63:48] */
  58. TEMPLATE_FIELD_SIP4 = 30, /* IPv6 source IP[79:64] */
  59. TEMPLATE_FIELD_SIP5 = 31, /* IPv6 source IP[95:80] */
  60. TEMPLATE_FIELD_SIP6 = 32, /* IPv6 source IP[111:96] */
  61. TEMPLATE_FIELD_SIP7 = 33, /* IPv6 source IP[127:112] */
  62. TEMPLATE_FIELD_DIP2 = 34, /* IPv6 destination IP[47:32] */
  63. TEMPLATE_FIELD_DIP3 = 35, /* IPv6 destination IP[63:48] */
  64. TEMPLATE_FIELD_DIP4 = 36, /* IPv6 destination IP[79:64] */
  65. TEMPLATE_FIELD_DIP5 = 37, /* IPv6 destination IP[95:80] */
  66. TEMPLATE_FIELD_DIP6 = 38, /* IPv6 destination IP[111:96] */
  67. TEMPLATE_FIELD_DIP7 = 39, /* IPv6 destination IP[127:112] */
  68. TEMPLATE_FIELD_FWD_VID = 40, /* Forwarding VLAN-ID */
  69. TEMPLATE_FIELD_FLOW_LABEL = 41,
  70. };
  71. /* The RTL838X SoCs use 5 fixed templates with definitions for which data fields are to
  72. * be copied from the Ethernet Frame header into the 12 User-definable fields of the Packet
  73. * Inspection Engine's buffer. The following defines the field contents for each of the fixed
  74. * templates. Additionally, 3 user-definable templates can be set up via the definitions
  75. * in RTL838X_ACL_TMPLTE_CTRL control registers.
  76. * TODO: See all src/app/diag_v2/src/diag_pie.c
  77. */
  78. #define N_FIXED_TEMPLATES 5
  79. static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] =
  80. {
  81. {
  82. TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_OTAG,
  83. TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2,
  84. TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
  85. TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_RANGE_CHK
  86. }, {
  87. TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
  88. TEMPLATE_FIELD_DIP1,TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_L4_SPORT,
  89. TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_ITAG,
  90. TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
  91. }, {
  92. TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
  93. TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO,
  94. TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_SIP0,
  95. TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1
  96. }, {
  97. TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2,
  98. TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5,
  99. TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_L4_DPORT,
  100. TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_IP_TOS_PROTO
  101. }, {
  102. TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2,
  103. TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5,
  104. TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_ITAG,
  105. TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
  106. },
  107. };
  108. void rtl838x_print_matrix(void)
  109. {
  110. unsigned volatile int *ptr8;
  111. ptr8 = RTL838X_SW_BASE + RTL838X_PORT_ISO_CTRL(0);
  112. for (int i = 0; i < 28; i += 8)
  113. pr_debug("> %8x %8x %8x %8x %8x %8x %8x %8x\n",
  114. ptr8[i + 0], ptr8[i + 1], ptr8[i + 2], ptr8[i + 3],
  115. ptr8[i + 4], ptr8[i + 5], ptr8[i + 6], ptr8[i + 7]);
  116. pr_debug("CPU_PORT> %8x\n", ptr8[28]);
  117. }
  118. static inline int rtl838x_port_iso_ctrl(int p)
  119. {
  120. return RTL838X_PORT_ISO_CTRL(p);
  121. }
  122. static inline void rtl838x_exec_tbl0_cmd(u32 cmd)
  123. {
  124. sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_0);
  125. do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_0) & BIT(15));
  126. }
  127. static inline void rtl838x_exec_tbl1_cmd(u32 cmd)
  128. {
  129. sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_1);
  130. do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_1) & BIT(15));
  131. }
  132. static inline int rtl838x_tbl_access_data_0(int i)
  133. {
  134. return RTL838X_TBL_ACCESS_DATA_0(i);
  135. }
  136. static void rtl838x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
  137. {
  138. u32 v;
  139. /* Read VLAN table (0) via register 0 */
  140. struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
  141. rtl_table_read(r, vlan);
  142. info->tagged_ports = sw_r32(rtl_table_data(r, 0));
  143. v = sw_r32(rtl_table_data(r, 1));
  144. pr_debug("VLAN_READ %d: %016llx %08x\n", vlan, info->tagged_ports, v);
  145. rtl_table_release(r);
  146. info->profile_id = v & 0x7;
  147. info->hash_mc_fid = !!(v & 0x8);
  148. info->hash_uc_fid = !!(v & 0x10);
  149. info->fid = (v >> 5) & 0x3f;
  150. /* Read UNTAG table (0) via table register 1 */
  151. r = rtl_table_get(RTL8380_TBL_1, 0);
  152. rtl_table_read(r, vlan);
  153. info->untagged_ports = sw_r32(rtl_table_data(r, 0));
  154. rtl_table_release(r);
  155. }
  156. static void rtl838x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
  157. {
  158. u32 v;
  159. /* Access VLAN table (0) via register 0 */
  160. struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
  161. sw_w32(info->tagged_ports, rtl_table_data(r, 0));
  162. v = info->profile_id;
  163. v |= info->hash_mc_fid ? 0x8 : 0;
  164. v |= info->hash_uc_fid ? 0x10 : 0;
  165. v |= ((u32)info->fid) << 5;
  166. sw_w32(v, rtl_table_data(r, 1));
  167. rtl_table_write(r, vlan);
  168. rtl_table_release(r);
  169. }
  170. static void rtl838x_vlan_set_untagged(u32 vlan, u64 portmask)
  171. {
  172. /* Access UNTAG table (0) via register 1 */
  173. struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 0);
  174. sw_w32(portmask & 0x1fffffff, rtl_table_data(r, 0));
  175. rtl_table_write(r, vlan);
  176. rtl_table_release(r);
  177. }
  178. /* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer
  179. */
  180. static void rtl838x_vlan_fwd_on_inner(int port, bool is_set)
  181. {
  182. if (is_set)
  183. sw_w32_mask(BIT(port), 0, RTL838X_VLAN_PORT_FWD);
  184. else
  185. sw_w32_mask(0, BIT(port), RTL838X_VLAN_PORT_FWD);
  186. }
  187. static u64 rtl838x_l2_hash_seed(u64 mac, u32 vid)
  188. {
  189. return mac << 12 | vid;
  190. }
  191. /* Applies the same hash algorithm as the one used currently by the ASIC to the seed
  192. * and returns a key into the L2 hash table
  193. */
  194. static u32 rtl838x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
  195. {
  196. u32 h1, h2, h3, h;
  197. if (sw_r32(priv->r->l2_ctrl_0) & 1) {
  198. h1 = (seed >> 11) & 0x7ff;
  199. h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
  200. h2 = (seed >> 33) & 0x7ff;
  201. h2 = ((h2 & 0x3f) << 5) | ((h2 >> 6) & 0x1f);
  202. h3 = (seed >> 44) & 0x7ff;
  203. h3 = ((h3 & 0x7f) << 4) | ((h3 >> 7) & 0xf);
  204. h = h1 ^ h2 ^ h3 ^ ((seed >> 55) & 0x1ff);
  205. h ^= ((seed >> 22) & 0x7ff) ^ (seed & 0x7ff);
  206. } else {
  207. h = ((seed >> 55) & 0x1ff) ^ ((seed >> 44) & 0x7ff) ^
  208. ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff) ^
  209. ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff);
  210. }
  211. return h;
  212. }
  213. static inline int rtl838x_mac_force_mode_ctrl(int p)
  214. {
  215. return RTL838X_MAC_FORCE_MODE_CTRL + (p << 2);
  216. }
  217. static inline int rtl838x_mac_port_ctrl(int p)
  218. {
  219. return RTL838X_MAC_PORT_CTRL(p);
  220. }
  221. static inline int rtl838x_l2_port_new_salrn(int p)
  222. {
  223. return RTL838X_L2_PORT_NEW_SALRN(p);
  224. }
  225. static inline int rtl838x_l2_port_new_sa_fwd(int p)
  226. {
  227. return RTL838X_L2_PORT_NEW_SA_FWD(p);
  228. }
  229. static inline int rtl838x_mac_link_spd_sts(int p)
  230. {
  231. return RTL838X_MAC_LINK_SPD_STS(p);
  232. }
  233. inline static int rtl838x_trk_mbr_ctr(int group)
  234. {
  235. return RTL838X_TRK_MBR_CTR + (group << 2);
  236. }
  237. /* Fills an L2 entry structure from the SoC registers */
  238. static void rtl838x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
  239. {
  240. /* Table contains different entry types, we need to identify the right one:
  241. * Check for MC entries, first
  242. * In contrast to the RTL93xx SoCs, there is no valid bit, use heuristics to
  243. * identify valid entries
  244. */
  245. e->is_ip_mc = !!(r[0] & BIT(22));
  246. e->is_ipv6_mc = !!(r[0] & BIT(21));
  247. e->type = L2_INVALID;
  248. if (!e->is_ip_mc && !e->is_ipv6_mc) {
  249. e->mac[0] = (r[1] >> 20);
  250. e->mac[1] = (r[1] >> 12);
  251. e->mac[2] = (r[1] >> 4);
  252. e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
  253. e->mac[4] = (r[2] >> 20);
  254. e->mac[5] = (r[2] >> 12);
  255. e->rvid = r[2] & 0xfff;
  256. e->vid = r[0] & 0xfff;
  257. /* Is it a unicast entry? check multicast bit */
  258. if (!(e->mac[0] & 1)) {
  259. e->is_static = !!((r[0] >> 19) & 1);
  260. e->port = (r[0] >> 12) & 0x1f;
  261. e->block_da = !!(r[1] & BIT(30));
  262. e->block_sa = !!(r[1] & BIT(31));
  263. e->suspended = !!(r[1] & BIT(29));
  264. e->next_hop = !!(r[1] & BIT(28));
  265. if (e->next_hop) {
  266. pr_debug("Found next hop entry, need to read extra data\n");
  267. e->nh_vlan_target = !!(r[0] & BIT(9));
  268. e->nh_route_id = r[0] & 0x1ff;
  269. e->vid = e->rvid;
  270. }
  271. e->age = (r[0] >> 17) & 0x3;
  272. e->valid = true;
  273. /* A valid entry has one of mutli-cast, aging, sa/da-blocking,
  274. * next-hop or static entry bit set
  275. */
  276. if (!(r[0] & 0x007c0000) && !(r[1] & 0xd0000000))
  277. e->valid = false;
  278. else
  279. e->type = L2_UNICAST;
  280. } else { /* L2 multicast */
  281. pr_debug("Got L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
  282. e->valid = true;
  283. e->type = L2_MULTICAST;
  284. e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
  285. }
  286. } else { /* IPv4 and IPv6 multicast */
  287. e->valid = true;
  288. e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
  289. e->mc_gip = (r[1] << 20) | (r[2] >> 12);
  290. e->rvid = r[2] & 0xfff;
  291. }
  292. if (e->is_ip_mc)
  293. e->type = IP4_MULTICAST;
  294. if (e->is_ipv6_mc)
  295. e->type = IP6_MULTICAST;
  296. }
  297. /* Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry */
  298. static void rtl838x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
  299. {
  300. u64 mac = ether_addr_to_u64(e->mac);
  301. if (!e->valid) {
  302. r[0] = r[1] = r[2] = 0;
  303. return;
  304. }
  305. r[0] = e->is_ip_mc ? BIT(22) : 0;
  306. r[0] |= e->is_ipv6_mc ? BIT(21) : 0;
  307. if (!e->is_ip_mc && !e->is_ipv6_mc) {
  308. r[1] = mac >> 20;
  309. r[2] = (mac & 0xfffff) << 12;
  310. /* Is it a unicast entry? check multicast bit */
  311. if (!(e->mac[0] & 1)) {
  312. r[0] |= e->is_static ? BIT(19) : 0;
  313. r[0] |= (e->port & 0x3f) << 12;
  314. r[0] |= e->vid;
  315. r[1] |= e->block_da ? BIT(30) : 0;
  316. r[1] |= e->block_sa ? BIT(31) : 0;
  317. r[1] |= e->suspended ? BIT(29) : 0;
  318. r[2] |= e->rvid & 0xfff;
  319. if (e->next_hop) {
  320. r[1] |= BIT(28);
  321. r[0] |= e->nh_vlan_target ? BIT(9) : 0;
  322. r[0] |= e->nh_route_id & 0x1ff;
  323. }
  324. r[0] |= (e->age & 0x3) << 17;
  325. } else { /* L2 Multicast */
  326. r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
  327. r[2] |= e->rvid & 0xfff;
  328. r[0] |= e->vid & 0xfff;
  329. pr_debug("FILL MC: %08x %08x %08x\n", r[0], r[1], r[2]);
  330. }
  331. } else { /* IPv4 and IPv6 multicast */
  332. r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
  333. r[1] = e->mc_gip >> 20;
  334. r[2] = e->mc_gip << 12;
  335. r[2] |= e->rvid;
  336. }
  337. }
  338. /* Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
  339. * hash is the id of the bucket and pos is the position of the entry in that bucket
  340. * The data read from the SoC is filled into rtl838x_l2_entry
  341. */
  342. static u64 rtl838x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
  343. {
  344. u32 r[3];
  345. struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0); /* Access L2 Table 0 */
  346. u32 idx = (0 << 14) | (hash << 2) | pos; /* Search SRAM, with hash and at pos in bucket */
  347. rtl_table_read(q, idx);
  348. for (int i = 0; i < 3; i++)
  349. r[i] = sw_r32(rtl_table_data(q, i));
  350. rtl_table_release(q);
  351. rtl838x_fill_l2_entry(r, e);
  352. if (!e->valid)
  353. return 0;
  354. return (((u64) r[1]) << 32) | (r[2]); /* mac and vid concatenated as hash seed */
  355. }
  356. static void rtl838x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
  357. {
  358. u32 r[3];
  359. struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0);
  360. u32 idx = (0 << 14) | (hash << 2) | pos; /* Access SRAM, with hash and at pos in bucket */
  361. rtl838x_fill_l2_row(r, e);
  362. for (int i = 0; i < 3; i++)
  363. sw_w32(r[i], rtl_table_data(q, i));
  364. rtl_table_write(q, idx);
  365. rtl_table_release(q);
  366. }
  367. static u64 rtl838x_read_cam(int idx, struct rtl838x_l2_entry *e)
  368. {
  369. u32 r[3];
  370. struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); /* Access L2 Table 1 */
  371. rtl_table_read(q, idx);
  372. for (int i = 0; i < 3; i++)
  373. r[i] = sw_r32(rtl_table_data(q, i));
  374. rtl_table_release(q);
  375. rtl838x_fill_l2_entry(r, e);
  376. if (!e->valid)
  377. return 0;
  378. pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
  379. /* Return MAC with concatenated VID ac concatenated ID */
  380. return (((u64) r[1]) << 32) | r[2];
  381. }
  382. static void rtl838x_write_cam(int idx, struct rtl838x_l2_entry *e)
  383. {
  384. u32 r[3];
  385. struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); /* Access L2 Table 1 */
  386. rtl838x_fill_l2_row(r, e);
  387. for (int i = 0; i < 3; i++)
  388. sw_w32(r[i], rtl_table_data(q, i));
  389. rtl_table_write(q, idx);
  390. rtl_table_release(q);
  391. }
  392. static u64 rtl838x_read_mcast_pmask(int idx)
  393. {
  394. u32 portmask;
  395. /* Read MC_PMSK (2) via register RTL8380_TBL_L2 */
  396. struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
  397. rtl_table_read(q, idx);
  398. portmask = sw_r32(rtl_table_data(q, 0));
  399. rtl_table_release(q);
  400. return portmask;
  401. }
  402. static void rtl838x_write_mcast_pmask(int idx, u64 portmask)
  403. {
  404. /* Access MC_PMSK (2) via register RTL8380_TBL_L2 */
  405. struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
  406. sw_w32(((u32)portmask) & 0x1fffffff, rtl_table_data(q, 0));
  407. rtl_table_write(q, idx);
  408. rtl_table_release(q);
  409. }
  410. static void rtl838x_vlan_profile_setup(int profile)
  411. {
  412. u32 pmask_id = UNKNOWN_MC_PMASK;
  413. /* Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for unknown MC traffic flooding */
  414. u32 p = 1 | pmask_id << 1 | pmask_id << 10 | pmask_id << 19;
  415. sw_w32(p, RTL838X_VLAN_PROFILE(profile));
  416. /* RTL8380 and RTL8390 use an index into the portmask table to set the
  417. * unknown multicast portmask, setup a default at a safe location
  418. * On RTL93XX, the portmask is directly set in the profile,
  419. * see e.g. rtl9300_vlan_profile_setup
  420. */
  421. rtl838x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x1fffffff);
  422. }
  423. static void rtl838x_l2_learning_setup(void)
  424. {
  425. /* Set portmask for broadcast traffic and unknown unicast address flooding
  426. * to the reserved entry in the portmask table used also for
  427. * multicast flooding */
  428. sw_w32(UNKNOWN_MC_PMASK << 12 | UNKNOWN_MC_PMASK, RTL838X_L2_FLD_PMSK);
  429. /* Enable learning constraint system-wide (bit 0), per-port (bit 1)
  430. * and per vlan (bit 2) */
  431. sw_w32(0x7, RTL838X_L2_LRN_CONSTRT_EN);
  432. /* Limit learning to maximum: 16k entries, after that just flood (bits 0-1) */
  433. sw_w32((0x3fff << 2) | 0, RTL838X_L2_LRN_CONSTRT);
  434. /* Do not trap ARP packets to CPU_PORT */
  435. sw_w32(0, RTL838X_SPCL_TRAP_ARP_CTRL);
  436. }
  437. static void rtl838x_enable_learning(int port, bool enable)
  438. {
  439. /* Limit learning to maximum: 16k entries */
  440. sw_w32_mask(0x3fff << 2, enable ? (0x3fff << 2) : 0,
  441. RTL838X_L2_PORT_LRN_CONSTRT + (port << 2));
  442. }
  443. static void rtl838x_enable_flood(int port, bool enable)
  444. {
  445. /* 0: Forward
  446. * 1: Disable
  447. * 2: to CPU
  448. * 3: Copy to CPU
  449. */
  450. sw_w32_mask(0x3, enable ? 0 : 1,
  451. RTL838X_L2_PORT_LRN_CONSTRT + (port << 2));
  452. }
  453. static void rtl838x_enable_mcast_flood(int port, bool enable)
  454. {
  455. }
  456. static void rtl838x_enable_bcast_flood(int port, bool enable)
  457. {
  458. }
  459. static void rtl838x_set_static_move_action(int port, bool forward)
  460. {
  461. int shift = MV_ACT_PORT_SHIFT(port);
  462. u32 val = forward ? MV_ACT_FORWARD : MV_ACT_DROP;
  463. sw_w32_mask(MV_ACT_MASK << shift, val << shift,
  464. RTL838X_L2_PORT_STATIC_MV_ACT(port));
  465. }
  466. static void rtl838x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
  467. {
  468. u32 cmd = 1 << 15 | /* Execute cmd */
  469. 1 << 14 | /* Read */
  470. 2 << 12 | /* Table type 0b10 */
  471. (msti & 0xfff);
  472. priv->r->exec_tbl0_cmd(cmd);
  473. for (int i = 0; i < 2; i++)
  474. port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
  475. }
  476. static void rtl838x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
  477. {
  478. u32 cmd = 1 << 15 | /* Execute cmd */
  479. 0 << 14 | /* Write */
  480. 2 << 12 | /* Table type 0b10 */
  481. (msti & 0xfff);
  482. for (int i = 0; i < 2; i++)
  483. sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
  484. priv->r->exec_tbl0_cmd(cmd);
  485. }
  486. u64 rtl838x_traffic_get(int source)
  487. {
  488. return rtl838x_get_port_reg(rtl838x_port_iso_ctrl(source));
  489. }
  490. void rtl838x_traffic_set(int source, u64 dest_matrix)
  491. {
  492. rtl838x_set_port_reg(dest_matrix, rtl838x_port_iso_ctrl(source));
  493. }
  494. void rtl838x_traffic_enable(int source, int dest)
  495. {
  496. rtl838x_mask_port_reg(0, BIT(dest), rtl838x_port_iso_ctrl(source));
  497. }
  498. void rtl838x_traffic_disable(int source, int dest)
  499. {
  500. rtl838x_mask_port_reg(BIT(dest), 0, rtl838x_port_iso_ctrl(source));
  501. }
  502. /* Enables or disables the EEE/EEEP capability of a port */
  503. static void rtl838x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable)
  504. {
  505. u32 v;
  506. /* This works only for Ethernet ports, and on the RTL838X, ports from 24 are SFP */
  507. if (port >= 24)
  508. return;
  509. pr_debug("In %s: setting port %d to %d\n", __func__, port, enable);
  510. v = enable ? 0x3 : 0x0;
  511. /* Set EEE state for 100 (bit 9) & 1000MBit (bit 10) */
  512. sw_w32_mask(0x3 << 9, v << 9, priv->r->mac_force_mode_ctrl(port));
  513. /* Set TX/RX EEE state */
  514. if (enable) {
  515. sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_TX_EN);
  516. sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_RX_EN);
  517. } else {
  518. sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_TX_EN);
  519. sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_RX_EN);
  520. }
  521. priv->ports[port].eee_enabled = enable;
  522. }
  523. /* Get EEE own capabilities and negotiation result */
  524. static int rtl838x_eee_port_ability(struct rtl838x_switch_priv *priv,
  525. struct ethtool_eee *e, int port)
  526. {
  527. u64 link;
  528. if (port >= 24)
  529. return 0;
  530. link = rtl839x_get_port_reg_le(RTL838X_MAC_LINK_STS);
  531. if (!(link & BIT(port)))
  532. return 0;
  533. if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(9))
  534. e->advertised |= ADVERTISED_100baseT_Full;
  535. if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(10))
  536. e->advertised |= ADVERTISED_1000baseT_Full;
  537. if (sw_r32(RTL838X_MAC_EEE_ABLTY) & BIT(port)) {
  538. e->lp_advertised = ADVERTISED_100baseT_Full;
  539. e->lp_advertised |= ADVERTISED_1000baseT_Full;
  540. return 1;
  541. }
  542. return 0;
  543. }
  544. static void rtl838x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
  545. {
  546. pr_info("Setting up EEE, state: %d\n", enable);
  547. sw_w32_mask(0x4, 0, RTL838X_SMI_GLB_CTRL);
  548. /* Set timers for EEE */
  549. sw_w32(0x5001411, RTL838X_EEE_TX_TIMER_GIGA_CTRL);
  550. sw_w32(0x5001417, RTL838X_EEE_TX_TIMER_GELITE_CTRL);
  551. /* Enable EEE MAC support on ports */
  552. for (int i = 0; i < priv->cpu_port; i++) {
  553. if (priv->ports[i].phy)
  554. rtl838x_port_eee_set(priv, i, enable);
  555. }
  556. priv->eee_enabled = enable;
  557. }
  558. static void rtl838x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
  559. {
  560. int block = index / PIE_BLOCK_SIZE;
  561. u32 block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);
  562. /* Make sure rule-lookup is enabled in the block */
  563. if (!(block_state & BIT(block)))
  564. sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
  565. }
  566. static void rtl838x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to)
  567. {
  568. int block_from = index_from / PIE_BLOCK_SIZE;
  569. int block_to = index_to / PIE_BLOCK_SIZE;
  570. u32 v = (index_from << 1)| (index_to << 12 ) | BIT(0);
  571. u32 block_state;
  572. pr_debug("%s: from %d to %d\n", __func__, index_from, index_to);
  573. mutex_lock(&priv->reg_mutex);
  574. /* Remember currently active blocks */
  575. block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);
  576. /* Make sure rule-lookup is disabled in the relevant blocks */
  577. for (int block = block_from; block <= block_to; block++) {
  578. if (block_state & BIT(block))
  579. sw_w32(block_state & (~BIT(block)), RTL838X_ACL_BLK_LOOKUP_CTRL);
  580. }
  581. /* Write from-to and execute bit into control register */
  582. sw_w32(v, RTL838X_ACL_CLR_CTRL);
  583. /* Wait until command has completed */
  584. do {
  585. } while (sw_r32(RTL838X_ACL_CLR_CTRL) & BIT(0));
  586. /* Re-enable rule lookup */
  587. for (int block = block_from; block <= block_to; block++) {
  588. if (!(block_state & BIT(block)))
  589. sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
  590. }
  591. mutex_unlock(&priv->reg_mutex);
  592. }
  593. /* Reads the intermediate representation of the templated match-fields of the
  594. * PIE rule in the pie_rule structure and fills in the raw data fields in the
  595. * raw register space r[].
  596. * The register space configuration size is identical for the RTL8380/90 and RTL9300,
  597. * however the RTL9310 has 2 more registers / fields and the physical field-ids
  598. * are specific to every platform.
  599. */
  600. static void rtl838x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
  601. {
  602. for (int i = 0; i < N_FIXED_FIELDS; i++) {
  603. enum template_field_id field_type = t[i];
  604. u16 data = 0, data_m = 0;
  605. switch (field_type) {
  606. case TEMPLATE_FIELD_SPM0:
  607. data = pr->spm;
  608. data_m = pr->spm_m;
  609. break;
  610. case TEMPLATE_FIELD_SPM1:
  611. data = pr->spm >> 16;
  612. data_m = pr->spm_m >> 16;
  613. break;
  614. case TEMPLATE_FIELD_OTAG:
  615. data = pr->otag;
  616. data_m = pr->otag_m;
  617. break;
  618. case TEMPLATE_FIELD_SMAC0:
  619. data = pr->smac[4];
  620. data = (data << 8) | pr->smac[5];
  621. data_m = pr->smac_m[4];
  622. data_m = (data_m << 8) | pr->smac_m[5];
  623. break;
  624. case TEMPLATE_FIELD_SMAC1:
  625. data = pr->smac[2];
  626. data = (data << 8) | pr->smac[3];
  627. data_m = pr->smac_m[2];
  628. data_m = (data_m << 8) | pr->smac_m[3];
  629. break;
  630. case TEMPLATE_FIELD_SMAC2:
  631. data = pr->smac[0];
  632. data = (data << 8) | pr->smac[1];
  633. data_m = pr->smac_m[0];
  634. data_m = (data_m << 8) | pr->smac_m[1];
  635. break;
  636. case TEMPLATE_FIELD_DMAC0:
  637. data = pr->dmac[4];
  638. data = (data << 8) | pr->dmac[5];
  639. data_m = pr->dmac_m[4];
  640. data_m = (data_m << 8) | pr->dmac_m[5];
  641. break;
  642. case TEMPLATE_FIELD_DMAC1:
  643. data = pr->dmac[2];
  644. data = (data << 8) | pr->dmac[3];
  645. data_m = pr->dmac_m[2];
  646. data_m = (data_m << 8) | pr->dmac_m[3];
  647. break;
  648. case TEMPLATE_FIELD_DMAC2:
  649. data = pr->dmac[0];
  650. data = (data << 8) | pr->dmac[1];
  651. data_m = pr->dmac_m[0];
  652. data_m = (data_m << 8) | pr->dmac_m[1];
  653. break;
  654. case TEMPLATE_FIELD_ETHERTYPE:
  655. data = pr->ethertype;
  656. data_m = pr->ethertype_m;
  657. break;
  658. case TEMPLATE_FIELD_ITAG:
  659. data = pr->itag;
  660. data_m = pr->itag_m;
  661. break;
  662. case TEMPLATE_FIELD_RANGE_CHK:
  663. data = pr->field_range_check;
  664. data_m = pr->field_range_check_m;
  665. break;
  666. case TEMPLATE_FIELD_SIP0:
  667. if (pr->is_ipv6) {
  668. data = pr->sip6.s6_addr16[7];
  669. data_m = pr->sip6_m.s6_addr16[7];
  670. } else {
  671. data = pr->sip;
  672. data_m = pr->sip_m;
  673. }
  674. break;
  675. case TEMPLATE_FIELD_SIP1:
  676. if (pr->is_ipv6) {
  677. data = pr->sip6.s6_addr16[6];
  678. data_m = pr->sip6_m.s6_addr16[6];
  679. } else {
  680. data = pr->sip >> 16;
  681. data_m = pr->sip_m >> 16;
  682. }
  683. break;
  684. case TEMPLATE_FIELD_SIP2:
  685. case TEMPLATE_FIELD_SIP3:
  686. case TEMPLATE_FIELD_SIP4:
  687. case TEMPLATE_FIELD_SIP5:
  688. case TEMPLATE_FIELD_SIP6:
  689. case TEMPLATE_FIELD_SIP7:
  690. data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
  691. data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
  692. break;
  693. case TEMPLATE_FIELD_DIP0:
  694. if (pr->is_ipv6) {
  695. data = pr->dip6.s6_addr16[7];
  696. data_m = pr->dip6_m.s6_addr16[7];
  697. } else {
  698. data = pr->dip;
  699. data_m = pr->dip_m;
  700. }
  701. break;
  702. case TEMPLATE_FIELD_DIP1:
  703. if (pr->is_ipv6) {
  704. data = pr->dip6.s6_addr16[6];
  705. data_m = pr->dip6_m.s6_addr16[6];
  706. } else {
  707. data = pr->dip >> 16;
  708. data_m = pr->dip_m >> 16;
  709. }
  710. break;
  711. case TEMPLATE_FIELD_DIP2:
  712. case TEMPLATE_FIELD_DIP3:
  713. case TEMPLATE_FIELD_DIP4:
  714. case TEMPLATE_FIELD_DIP5:
  715. case TEMPLATE_FIELD_DIP6:
  716. case TEMPLATE_FIELD_DIP7:
  717. data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
  718. data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
  719. break;
  720. case TEMPLATE_FIELD_IP_TOS_PROTO:
  721. data = pr->tos_proto;
  722. data_m = pr->tos_proto_m;
  723. break;
  724. case TEMPLATE_FIELD_L4_SPORT:
  725. data = pr->sport;
  726. data_m = pr->sport_m;
  727. break;
  728. case TEMPLATE_FIELD_L4_DPORT:
  729. data = pr->dport;
  730. data_m = pr->dport_m;
  731. break;
  732. case TEMPLATE_FIELD_ICMP_IGMP:
  733. data = pr->icmp_igmp;
  734. data_m = pr->icmp_igmp_m;
  735. break;
  736. default:
  737. pr_info("%s: unknown field %d\n", __func__, field_type);
  738. continue;
  739. }
  740. if (!(i % 2)) {
  741. r[5 - i / 2] = data;
  742. r[12 - i / 2] = data_m;
  743. } else {
  744. r[5 - i / 2] |= ((u32)data) << 16;
  745. r[12 - i / 2] |= ((u32)data_m) << 16;
  746. }
  747. }
  748. }
  749. /* Creates the intermediate representation of the templated match-fields of the
  750. * PIE rule in the pie_rule structure by reading the raw data fields in the
  751. * raw register space r[].
  752. * The register space configuration size is identical for the RTL8380/90 and RTL9300,
  753. * however the RTL9310 has 2 more registers / fields and the physical field-ids
  754. */
  755. static void rtl838x_read_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
  756. {
  757. for (int i = 0; i < N_FIXED_FIELDS; i++) {
  758. enum template_field_id field_type = t[i];
  759. u16 data, data_m;
  760. field_type = t[i];
  761. if (!(i % 2)) {
  762. data = r[5 - i / 2];
  763. data_m = r[12 - i / 2];
  764. } else {
  765. data = r[5 - i / 2] >> 16;
  766. data_m = r[12 - i / 2] >> 16;
  767. }
  768. switch (field_type) {
  769. case TEMPLATE_FIELD_SPM0:
  770. pr->spm = (pr->spn << 16) | data;
  771. pr->spm_m = (pr->spn << 16) | data_m;
  772. break;
  773. case TEMPLATE_FIELD_SPM1:
  774. pr->spm = data;
  775. pr->spm_m = data_m;
  776. break;
  777. case TEMPLATE_FIELD_OTAG:
  778. pr->otag = data;
  779. pr->otag_m = data_m;
  780. break;
  781. case TEMPLATE_FIELD_SMAC0:
  782. pr->smac[4] = data >> 8;
  783. pr->smac[5] = data;
  784. pr->smac_m[4] = data >> 8;
  785. pr->smac_m[5] = data;
  786. break;
  787. case TEMPLATE_FIELD_SMAC1:
  788. pr->smac[2] = data >> 8;
  789. pr->smac[3] = data;
  790. pr->smac_m[2] = data >> 8;
  791. pr->smac_m[3] = data;
  792. break;
  793. case TEMPLATE_FIELD_SMAC2:
  794. pr->smac[0] = data >> 8;
  795. pr->smac[1] = data;
  796. pr->smac_m[0] = data >> 8;
  797. pr->smac_m[1] = data;
  798. break;
  799. case TEMPLATE_FIELD_DMAC0:
  800. pr->dmac[4] = data >> 8;
  801. pr->dmac[5] = data;
  802. pr->dmac_m[4] = data >> 8;
  803. pr->dmac_m[5] = data;
  804. break;
  805. case TEMPLATE_FIELD_DMAC1:
  806. pr->dmac[2] = data >> 8;
  807. pr->dmac[3] = data;
  808. pr->dmac_m[2] = data >> 8;
  809. pr->dmac_m[3] = data;
  810. break;
  811. case TEMPLATE_FIELD_DMAC2:
  812. pr->dmac[0] = data >> 8;
  813. pr->dmac[1] = data;
  814. pr->dmac_m[0] = data >> 8;
  815. pr->dmac_m[1] = data;
  816. break;
  817. case TEMPLATE_FIELD_ETHERTYPE:
  818. pr->ethertype = data;
  819. pr->ethertype_m = data_m;
  820. break;
  821. case TEMPLATE_FIELD_ITAG:
  822. pr->itag = data;
  823. pr->itag_m = data_m;
  824. break;
  825. case TEMPLATE_FIELD_RANGE_CHK:
  826. pr->field_range_check = data;
  827. pr->field_range_check_m = data_m;
  828. break;
  829. case TEMPLATE_FIELD_SIP0:
  830. pr->sip = data;
  831. pr->sip_m = data_m;
  832. break;
  833. case TEMPLATE_FIELD_SIP1:
  834. pr->sip = (pr->sip << 16) | data;
  835. pr->sip_m = (pr->sip << 16) | data_m;
  836. break;
  837. case TEMPLATE_FIELD_SIP2:
  838. pr->is_ipv6 = true;
  839. /* Make use of limitiations on the position of the match values */
  840. ipv6_addr_set(&pr->sip6, pr->sip, r[5 - i / 2],
  841. r[4 - i / 2], r[3 - i / 2]);
  842. ipv6_addr_set(&pr->sip6_m, pr->sip_m, r[5 - i / 2],
  843. r[4 - i / 2], r[3 - i / 2]);
  844. case TEMPLATE_FIELD_SIP3:
  845. case TEMPLATE_FIELD_SIP4:
  846. case TEMPLATE_FIELD_SIP5:
  847. case TEMPLATE_FIELD_SIP6:
  848. case TEMPLATE_FIELD_SIP7:
  849. break;
  850. case TEMPLATE_FIELD_DIP0:
  851. pr->dip = data;
  852. pr->dip_m = data_m;
  853. break;
  854. case TEMPLATE_FIELD_DIP1:
  855. pr->dip = (pr->dip << 16) | data;
  856. pr->dip_m = (pr->dip << 16) | data_m;
  857. break;
  858. case TEMPLATE_FIELD_DIP2:
  859. pr->is_ipv6 = true;
  860. ipv6_addr_set(&pr->dip6, pr->dip, r[5 - i / 2],
  861. r[4 - i / 2], r[3 - i / 2]);
  862. ipv6_addr_set(&pr->dip6_m, pr->dip_m, r[5 - i / 2],
  863. r[4 - i / 2], r[3 - i / 2]);
  864. case TEMPLATE_FIELD_DIP3:
  865. case TEMPLATE_FIELD_DIP4:
  866. case TEMPLATE_FIELD_DIP5:
  867. case TEMPLATE_FIELD_DIP6:
  868. case TEMPLATE_FIELD_DIP7:
  869. break;
  870. case TEMPLATE_FIELD_IP_TOS_PROTO:
  871. pr->tos_proto = data;
  872. pr->tos_proto_m = data_m;
  873. break;
  874. case TEMPLATE_FIELD_L4_SPORT:
  875. pr->sport = data;
  876. pr->sport_m = data_m;
  877. break;
  878. case TEMPLATE_FIELD_L4_DPORT:
  879. pr->dport = data;
  880. pr->dport_m = data_m;
  881. break;
  882. case TEMPLATE_FIELD_ICMP_IGMP:
  883. pr->icmp_igmp = data;
  884. pr->icmp_igmp_m = data_m;
  885. break;
  886. default:
  887. pr_info("%s: unknown field %d\n", __func__, field_type);
  888. }
  889. }
  890. }
  891. static void rtl838x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr)
  892. {
  893. pr->spmmask_fix = (r[6] >> 22) & 0x3;
  894. pr->spn = (r[6] >> 16) & 0x3f;
  895. pr->mgnt_vlan = (r[6] >> 15) & 1;
  896. pr->dmac_hit_sw = (r[6] >> 14) & 1;
  897. pr->not_first_frag = (r[6] >> 13) & 1;
  898. pr->frame_type_l4 = (r[6] >> 10) & 7;
  899. pr->frame_type = (r[6] >> 8) & 3;
  900. pr->otag_fmt = (r[6] >> 7) & 1;
  901. pr->itag_fmt = (r[6] >> 6) & 1;
  902. pr->otag_exist = (r[6] >> 5) & 1;
  903. pr->itag_exist = (r[6] >> 4) & 1;
  904. pr->frame_type_l2 = (r[6] >> 2) & 3;
  905. pr->tid = r[6] & 3;
  906. pr->spmmask_fix_m = (r[13] >> 22) & 0x3;
  907. pr->spn_m = (r[13] >> 16) & 0x3f;
  908. pr->mgnt_vlan_m = (r[13] >> 15) & 1;
  909. pr->dmac_hit_sw_m = (r[13] >> 14) & 1;
  910. pr->not_first_frag_m = (r[13] >> 13) & 1;
  911. pr->frame_type_l4_m = (r[13] >> 10) & 7;
  912. pr->frame_type_m = (r[13] >> 8) & 3;
  913. pr->otag_fmt_m = (r[13] >> 7) & 1;
  914. pr->itag_fmt_m = (r[13] >> 6) & 1;
  915. pr->otag_exist_m = (r[13] >> 5) & 1;
  916. pr->itag_exist_m = (r[13] >> 4) & 1;
  917. pr->frame_type_l2_m = (r[13] >> 2) & 3;
  918. pr->tid_m = r[13] & 3;
  919. pr->valid = r[14] & BIT(31);
  920. pr->cond_not = r[14] & BIT(30);
  921. pr->cond_and1 = r[14] & BIT(29);
  922. pr->cond_and2 = r[14] & BIT(28);
  923. pr->ivalid = r[14] & BIT(27);
  924. pr->drop = (r[17] >> 14) & 3;
  925. pr->fwd_sel = r[17] & BIT(13);
  926. pr->ovid_sel = r[17] & BIT(12);
  927. pr->ivid_sel = r[17] & BIT(11);
  928. pr->flt_sel = r[17] & BIT(10);
  929. pr->log_sel = r[17] & BIT(9);
  930. pr->rmk_sel = r[17] & BIT(8);
  931. pr->meter_sel = r[17] & BIT(7);
  932. pr->tagst_sel = r[17] & BIT(6);
  933. pr->mir_sel = r[17] & BIT(5);
  934. pr->nopri_sel = r[17] & BIT(4);
  935. pr->cpupri_sel = r[17] & BIT(3);
  936. pr->otpid_sel = r[17] & BIT(2);
  937. pr->itpid_sel = r[17] & BIT(1);
  938. pr->shaper_sel = r[17] & BIT(0);
  939. }
  940. static void rtl838x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr)
  941. {
  942. r[6] = ((u32) (pr->spmmask_fix & 0x3)) << 22;
  943. r[6] |= ((u32) (pr->spn & 0x3f)) << 16;
  944. r[6] |= pr->mgnt_vlan ? BIT(15) : 0;
  945. r[6] |= pr->dmac_hit_sw ? BIT(14) : 0;
  946. r[6] |= pr->not_first_frag ? BIT(13) : 0;
  947. r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 10;
  948. r[6] |= ((u32) (pr->frame_type & 0x3)) << 8;
  949. r[6] |= pr->otag_fmt ? BIT(7) : 0;
  950. r[6] |= pr->itag_fmt ? BIT(6) : 0;
  951. r[6] |= pr->otag_exist ? BIT(5) : 0;
  952. r[6] |= pr->itag_exist ? BIT(4) : 0;
  953. r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 2;
  954. r[6] |= ((u32) (pr->tid & 0x3));
  955. r[13] = ((u32) (pr->spmmask_fix_m & 0x3)) << 22;
  956. r[13] |= ((u32) (pr->spn_m & 0x3f)) << 16;
  957. r[13] |= pr->mgnt_vlan_m ? BIT(15) : 0;
  958. r[13] |= pr->dmac_hit_sw_m ? BIT(14) : 0;
  959. r[13] |= pr->not_first_frag_m ? BIT(13) : 0;
  960. r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 10;
  961. r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 8;
  962. r[13] |= pr->otag_fmt_m ? BIT(7) : 0;
  963. r[13] |= pr->itag_fmt_m ? BIT(6) : 0;
  964. r[13] |= pr->otag_exist_m ? BIT(5) : 0;
  965. r[13] |= pr->itag_exist_m ? BIT(4) : 0;
  966. r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 2;
  967. r[13] |= ((u32) (pr->tid_m & 0x3));
  968. r[14] = pr->valid ? BIT(31) : 0;
  969. r[14] |= pr->cond_not ? BIT(30) : 0;
  970. r[14] |= pr->cond_and1 ? BIT(29) : 0;
  971. r[14] |= pr->cond_and2 ? BIT(28) : 0;
  972. r[14] |= pr->ivalid ? BIT(27) : 0;
  973. if (pr->drop)
  974. r[17] = 0x1 << 14; /* Standard drop action */
  975. else
  976. r[17] = 0;
  977. r[17] |= pr->fwd_sel ? BIT(13) : 0;
  978. r[17] |= pr->ovid_sel ? BIT(12) : 0;
  979. r[17] |= pr->ivid_sel ? BIT(11) : 0;
  980. r[17] |= pr->flt_sel ? BIT(10) : 0;
  981. r[17] |= pr->log_sel ? BIT(9) : 0;
  982. r[17] |= pr->rmk_sel ? BIT(8) : 0;
  983. r[17] |= pr->meter_sel ? BIT(7) : 0;
  984. r[17] |= pr->tagst_sel ? BIT(6) : 0;
  985. r[17] |= pr->mir_sel ? BIT(5) : 0;
  986. r[17] |= pr->nopri_sel ? BIT(4) : 0;
  987. r[17] |= pr->cpupri_sel ? BIT(3) : 0;
  988. r[17] |= pr->otpid_sel ? BIT(2) : 0;
  989. r[17] |= pr->itpid_sel ? BIT(1) : 0;
  990. r[17] |= pr->shaper_sel ? BIT(0) : 0;
  991. }
  992. static int rtl838x_write_pie_action(u32 r[], struct pie_rule *pr)
  993. {
  994. u16 *aif = (u16 *)&r[17];
  995. u16 data;
  996. int fields_used = 0;
  997. aif--;
  998. pr_debug("%s, at %08x\n", __func__, (u32)aif);
  999. /* Multiple actions can be linked to a match of a PIE rule,
  1000. * they have different precedence depending on their type and this precedence
  1001. * defines which Action Information Field (0-4) in the IACL table stores
  1002. * the additional data of the action (like e.g. the port number a packet is
  1003. * forwarded to) */
  1004. /* TODO: count bits in selectors to limit to a maximum number of actions */
  1005. if (pr->fwd_sel) { /* Forwarding action */
  1006. data = pr->fwd_act << 13;
  1007. data |= pr->fwd_data;
  1008. data |= pr->bypass_all ? BIT(12) : 0;
  1009. data |= pr->bypass_ibc_sc ? BIT(11) : 0;
  1010. data |= pr->bypass_igr_stp ? BIT(10) : 0;
  1011. *aif-- = data;
  1012. fields_used++;
  1013. }
  1014. if (pr->ovid_sel) { /* Outer VID action */
  1015. data = (pr->ovid_act & 0x3) << 12;
  1016. data |= pr->ovid_data;
  1017. *aif-- = data;
  1018. fields_used++;
  1019. }
  1020. if (pr->ivid_sel) { /* Inner VID action */
  1021. data = (pr->ivid_act & 0x3) << 12;
  1022. data |= pr->ivid_data;
  1023. *aif-- = data;
  1024. fields_used++;
  1025. }
  1026. if (pr->flt_sel) { /* Filter action */
  1027. *aif-- = pr->flt_data;
  1028. fields_used++;
  1029. }
  1030. if (pr->log_sel) { /* Log action */
  1031. if (fields_used >= 4)
  1032. return -1;
  1033. *aif-- = pr->log_data;
  1034. fields_used++;
  1035. }
  1036. if (pr->rmk_sel) { /* Remark action */
  1037. if (fields_used >= 4)
  1038. return -1;
  1039. *aif-- = pr->rmk_data;
  1040. fields_used++;
  1041. }
  1042. if (pr->meter_sel) { /* Meter action */
  1043. if (fields_used >= 4)
  1044. return -1;
  1045. *aif-- = pr->meter_data;
  1046. fields_used++;
  1047. }
  1048. if (pr->tagst_sel) { /* Egress Tag Status action */
  1049. if (fields_used >= 4)
  1050. return -1;
  1051. *aif-- = pr->tagst_data;
  1052. fields_used++;
  1053. }
  1054. if (pr->mir_sel) { /* Mirror action */
  1055. if (fields_used >= 4)
  1056. return -1;
  1057. *aif-- = pr->mir_data;
  1058. fields_used++;
  1059. }
  1060. if (pr->nopri_sel) { /* Normal Priority action */
  1061. if (fields_used >= 4)
  1062. return -1;
  1063. *aif-- = pr->nopri_data;
  1064. fields_used++;
  1065. }
  1066. if (pr->cpupri_sel) { /* CPU Priority action */
  1067. if (fields_used >= 4)
  1068. return -1;
  1069. *aif-- = pr->nopri_data;
  1070. fields_used++;
  1071. }
  1072. if (pr->otpid_sel) { /* OTPID action */
  1073. if (fields_used >= 4)
  1074. return -1;
  1075. *aif-- = pr->otpid_data;
  1076. fields_used++;
  1077. }
  1078. if (pr->itpid_sel) { /* ITPID action */
  1079. if (fields_used >= 4)
  1080. return -1;
  1081. *aif-- = pr->itpid_data;
  1082. fields_used++;
  1083. }
  1084. if (pr->shaper_sel) { /* Traffic shaper action */
  1085. if (fields_used >= 4)
  1086. return -1;
  1087. *aif-- = pr->shaper_data;
  1088. fields_used++;
  1089. }
  1090. return 0;
  1091. }
  1092. static void rtl838x_read_pie_action(u32 r[], struct pie_rule *pr)
  1093. {
  1094. u16 *aif = (u16 *)&r[17];
  1095. aif--;
  1096. pr_debug("%s, at %08x\n", __func__, (u32)aif);
  1097. if (pr->drop)
  1098. pr_debug("%s: Action Drop: %d", __func__, pr->drop);
  1099. if (pr->fwd_sel){ /* Forwarding action */
  1100. pr->fwd_act = *aif >> 13;
  1101. pr->fwd_data = *aif--;
  1102. pr->bypass_all = pr->fwd_data & BIT(12);
  1103. pr->bypass_ibc_sc = pr->fwd_data & BIT(11);
  1104. pr->bypass_igr_stp = pr->fwd_data & BIT(10);
  1105. if (pr->bypass_all || pr->bypass_ibc_sc || pr->bypass_igr_stp)
  1106. pr->bypass_sel = true;
  1107. }
  1108. if (pr->ovid_sel) /* Outer VID action */
  1109. pr->ovid_data = *aif--;
  1110. if (pr->ivid_sel) /* Inner VID action */
  1111. pr->ivid_data = *aif--;
  1112. if (pr->flt_sel) /* Filter action */
  1113. pr->flt_data = *aif--;
  1114. if (pr->log_sel) /* Log action */
  1115. pr->log_data = *aif--;
  1116. if (pr->rmk_sel) /* Remark action */
  1117. pr->rmk_data = *aif--;
  1118. if (pr->meter_sel) /* Meter action */
  1119. pr->meter_data = *aif--;
  1120. if (pr->tagst_sel) /* Egress Tag Status action */
  1121. pr->tagst_data = *aif--;
  1122. if (pr->mir_sel) /* Mirror action */
  1123. pr->mir_data = *aif--;
  1124. if (pr->nopri_sel) /* Normal Priority action */
  1125. pr->nopri_data = *aif--;
  1126. if (pr->cpupri_sel) /* CPU Priority action */
  1127. pr->nopri_data = *aif--;
  1128. if (pr->otpid_sel) /* OTPID action */
  1129. pr->otpid_data = *aif--;
  1130. if (pr->itpid_sel) /* ITPID action */
  1131. pr->itpid_data = *aif--;
  1132. if (pr->shaper_sel) /* Traffic shaper action */
  1133. pr->shaper_data = *aif--;
  1134. }
  1135. static void rtl838x_pie_rule_dump_raw(u32 r[])
  1136. {
  1137. pr_info("Raw IACL table entry:\n");
  1138. pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]);
  1139. pr_info("Fixed : %08x\n", r[6]);
  1140. pr_info("Match M: %08x %08x %08x %08x %08x %08x\n", r[7], r[8], r[9], r[10], r[11], r[12]);
  1141. pr_info("Fixed M: %08x\n", r[13]);
  1142. pr_info("AIF : %08x %08x %08x\n", r[14], r[15], r[16]);
  1143. pr_info("Sel : %08x\n", r[17]);
  1144. }
  1145. // Currently not used
  1146. // static void rtl838x_pie_rule_dump(struct pie_rule *pr)
  1147. // {
  1148. // pr_info("Drop: %d, fwd: %d, ovid: %d, ivid: %d, flt: %d, log: %d, rmk: %d, meter: %d tagst: %d, mir: %d, nopri: %d, cpupri: %d, otpid: %d, itpid: %d, shape: %d\n",
  1149. // pr->drop, pr->fwd_sel, pr->ovid_sel, pr->ivid_sel, pr->flt_sel, pr->log_sel, pr->rmk_sel, pr->log_sel, pr->tagst_sel, pr->mir_sel, pr->nopri_sel,
  1150. // pr->cpupri_sel, pr->otpid_sel, pr->itpid_sel, pr->shaper_sel);
  1151. // if (pr->fwd_sel)
  1152. // pr_info("FWD: %08x\n", pr->fwd_data);
  1153. // pr_info("TID: %x, %x\n", pr->tid, pr->tid_m);
  1154. // }
  1155. static int rtl838x_pie_rule_read(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
  1156. {
  1157. /* Read IACL table (1) via register 0 */
  1158. struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
  1159. u32 r[18];
  1160. int block = idx / PIE_BLOCK_SIZE;
  1161. u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));
  1162. memset(pr, 0, sizeof(*pr));
  1163. rtl_table_read(q, idx);
  1164. for (int i = 0; i < 18; i++)
  1165. r[i] = sw_r32(rtl_table_data(q, i));
  1166. rtl_table_release(q);
  1167. rtl838x_read_pie_fixed_fields(r, pr);
  1168. if (!pr->valid)
  1169. return 0;
  1170. pr_info("%s: template_selectors %08x, tid: %d\n", __func__, t_select, pr->tid);
  1171. rtl838x_pie_rule_dump_raw(r);
  1172. rtl838x_read_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
  1173. rtl838x_read_pie_action(r, pr);
  1174. return 0;
  1175. }
  1176. static int rtl838x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
  1177. {
  1178. /* Access IACL table (1) via register 0 */
  1179. struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
  1180. u32 r[18];
  1181. int err;
  1182. int block = idx / PIE_BLOCK_SIZE;
  1183. u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));
  1184. pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select);
  1185. for (int i = 0; i < 18; i++)
  1186. r[i] = 0;
  1187. if (!pr->valid) {
  1188. err = -EINVAL;
  1189. pr_err("Rule invalid\n");
  1190. goto errout;
  1191. }
  1192. rtl838x_write_pie_fixed_fields(r, pr);
  1193. pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 3)) & 0x7);
  1194. rtl838x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
  1195. err = rtl838x_write_pie_action(r, pr);
  1196. if (err) {
  1197. pr_err("Rule actions too complex\n");
  1198. goto errout;
  1199. }
  1200. /* rtl838x_pie_rule_dump_raw(r); */
  1201. for (int i = 0; i < 18; i++)
  1202. sw_w32(r[i], rtl_table_data(q, i));
  1203. errout:
  1204. rtl_table_write(q, idx);
  1205. rtl_table_release(q);
  1206. return err;
  1207. }
  1208. static bool rtl838x_pie_templ_has(int t, enum template_field_id field_type)
  1209. {
  1210. enum template_field_id ft;
  1211. for (int i = 0; i < N_FIXED_FIELDS; i++) {
  1212. ft = fixed_templates[t][i];
  1213. if (field_type == ft)
  1214. return true;
  1215. }
  1216. return false;
  1217. }
  1218. static int rtl838x_pie_verify_template(struct rtl838x_switch_priv *priv,
  1219. struct pie_rule *pr, int t, int block)
  1220. {
  1221. int i;
  1222. if (!pr->is_ipv6 && pr->sip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP0))
  1223. return -1;
  1224. if (!pr->is_ipv6 && pr->dip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP0))
  1225. return -1;
  1226. if (pr->is_ipv6) {
  1227. if ((pr->sip6_m.s6_addr32[0] ||
  1228. pr->sip6_m.s6_addr32[1] ||
  1229. pr->sip6_m.s6_addr32[2] ||
  1230. pr->sip6_m.s6_addr32[3]) &&
  1231. !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP2))
  1232. return -1;
  1233. if ((pr->dip6_m.s6_addr32[0] ||
  1234. pr->dip6_m.s6_addr32[1] ||
  1235. pr->dip6_m.s6_addr32[2] ||
  1236. pr->dip6_m.s6_addr32[3]) &&
  1237. !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP2))
  1238. return -1;
  1239. }
  1240. if (ether_addr_to_u64(pr->smac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0))
  1241. return -1;
  1242. if (ether_addr_to_u64(pr->dmac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0))
  1243. return -1;
  1244. /* TODO: Check more */
  1245. i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE);
  1246. if (i >= PIE_BLOCK_SIZE)
  1247. return -1;
  1248. return i + PIE_BLOCK_SIZE * block;
  1249. }
  1250. static int rtl838x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
  1251. {
  1252. int idx, block, j;
  1253. pr_debug("In %s\n", __func__);
  1254. mutex_lock(&priv->pie_mutex);
  1255. for (block = 0; block < priv->n_pie_blocks; block++) {
  1256. for (j = 0; j < 3; j++) {
  1257. int t = (sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block)) >> (j * 3)) & 0x7;
  1258. pr_debug("Testing block %d, template %d, template id %d\n", block, j, t);
  1259. idx = rtl838x_pie_verify_template(priv, pr, t, block);
  1260. if (idx >= 0)
  1261. break;
  1262. }
  1263. if (j < 3)
  1264. break;
  1265. }
  1266. if (block >= priv->n_pie_blocks) {
  1267. mutex_unlock(&priv->pie_mutex);
  1268. return -EOPNOTSUPP;
  1269. }
  1270. pr_debug("Using block: %d, index %d, template-id %d\n", block, idx, j);
  1271. set_bit(idx, priv->pie_use_bm);
  1272. pr->valid = true;
  1273. pr->tid = j; /* Mapped to template number */
  1274. pr->tid_m = 0x3;
  1275. pr->id = idx;
  1276. rtl838x_pie_lookup_enable(priv, idx);
  1277. rtl838x_pie_rule_write(priv, idx, pr);
  1278. mutex_unlock(&priv->pie_mutex);
  1279. return 0;
  1280. }
  1281. static void rtl838x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
  1282. {
  1283. int idx = pr->id;
  1284. rtl838x_pie_rule_del(priv, idx, idx);
  1285. clear_bit(idx, priv->pie_use_bm);
  1286. }
  1287. /* Initializes the Packet Inspection Engine:
  1288. * powers it up, enables default matching templates for all blocks
  1289. * and clears all rules possibly installed by u-boot
  1290. */
  1291. static void rtl838x_pie_init(struct rtl838x_switch_priv *priv)
  1292. {
  1293. u32 template_selectors;
  1294. mutex_init(&priv->pie_mutex);
  1295. /* Enable ACL lookup on all ports, including CPU_PORT */
  1296. for (int i = 0; i <= priv->cpu_port; i++)
  1297. sw_w32(1, RTL838X_ACL_PORT_LOOKUP_CTRL(i));
  1298. /* Power on all PIE blocks */
  1299. for (int i = 0; i < priv->n_pie_blocks; i++)
  1300. sw_w32_mask(0, BIT(i), RTL838X_ACL_BLK_PWR_CTRL);
  1301. /* Include IPG in metering */
  1302. sw_w32(1, RTL838X_METER_GLB_CTRL);
  1303. /* Delete all present rules */
  1304. rtl838x_pie_rule_del(priv, 0, priv->n_pie_blocks * PIE_BLOCK_SIZE - 1);
  1305. /* Routing bypasses source port filter: disable write-protection, first */
  1306. sw_w32_mask(0, 3, RTL838X_INT_RW_CTRL);
  1307. sw_w32_mask(0, 1, RTL838X_DMY_REG27);
  1308. sw_w32_mask(3, 0, RTL838X_INT_RW_CTRL);
  1309. /* Enable predefined templates 0, 1 and 2 for even blocks */
  1310. template_selectors = 0 | (1 << 3) | (2 << 6);
  1311. for (int i = 0; i < 6; i += 2)
  1312. sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));
  1313. /* Enable predefined templates 0, 3 and 4 (IPv6 support) for odd blocks */
  1314. template_selectors = 0 | (3 << 3) | (4 << 6);
  1315. for (int i = 1; i < priv->n_pie_blocks; i += 2)
  1316. sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));
  1317. /* Group each pair of physical blocks together to a logical block */
  1318. sw_w32(0b10101010101, RTL838X_ACL_BLK_GROUP_CTRL);
  1319. }
  1320. static u32 rtl838x_packet_cntr_read(int counter)
  1321. {
  1322. u32 v;
  1323. /* Read LOG table (3) via register RTL8380_TBL_0 */
  1324. struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);
  1325. pr_debug("In %s, id %d\n", __func__, counter);
  1326. rtl_table_read(r, counter / 2);
  1327. pr_debug("Registers: %08x %08x\n",
  1328. sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)));
  1329. /* The table has a size of 2 registers */
  1330. if (counter % 2)
  1331. v = sw_r32(rtl_table_data(r, 0));
  1332. else
  1333. v = sw_r32(rtl_table_data(r, 1));
  1334. rtl_table_release(r);
  1335. return v;
  1336. }
  1337. static void rtl838x_packet_cntr_clear(int counter)
  1338. {
  1339. /* Access LOG table (3) via register RTL8380_TBL_0 */
  1340. struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);
  1341. pr_debug("In %s, id %d\n", __func__, counter);
  1342. /* The table has a size of 2 registers */
  1343. if (counter % 2)
  1344. sw_w32(0, rtl_table_data(r, 0));
  1345. else
  1346. sw_w32(0, rtl_table_data(r, 1));
  1347. rtl_table_write(r, counter / 2);
  1348. rtl_table_release(r);
  1349. }
  1350. static void rtl838x_route_read(int idx, struct rtl83xx_route *rt)
  1351. {
  1352. /* Read ROUTING table (2) via register RTL8380_TBL_1 */
  1353. struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
  1354. pr_debug("In %s, id %d\n", __func__, idx);
  1355. rtl_table_read(r, idx);
  1356. /* The table has a size of 2 registers */
  1357. rt->nh.gw = sw_r32(rtl_table_data(r, 0));
  1358. rt->nh.gw <<= 32;
  1359. rt->nh.gw |= sw_r32(rtl_table_data(r, 1));
  1360. rtl_table_release(r);
  1361. }
  1362. static void rtl838x_route_write(int idx, struct rtl83xx_route *rt)
  1363. {
  1364. /* Access ROUTING table (2) via register RTL8380_TBL_1 */
  1365. struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
  1366. pr_debug("In %s, id %d, gw: %016llx\n", __func__, idx, rt->nh.gw);
  1367. sw_w32(rt->nh.gw >> 32, rtl_table_data(r, 0));
  1368. sw_w32(rt->nh.gw, rtl_table_data(r, 1));
  1369. rtl_table_write(r, idx);
  1370. rtl_table_release(r);
  1371. }
  1372. static int rtl838x_l3_setup(struct rtl838x_switch_priv *priv)
  1373. {
  1374. /* Nothing to be done */
  1375. return 0;
  1376. }
  1377. void rtl838x_vlan_port_keep_tag_set(int port, bool keep_outer, bool keep_inner)
  1378. {
  1379. sw_w32(FIELD_PREP(RTL838X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK,
  1380. keep_outer ? RTL838X_VLAN_PORT_TAG_STS_TAGGED : RTL838X_VLAN_PORT_TAG_STS_UNTAG) |
  1381. FIELD_PREP(RTL838X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK,
  1382. keep_inner ? RTL838X_VLAN_PORT_TAG_STS_TAGGED : RTL838X_VLAN_PORT_TAG_STS_UNTAG),
  1383. RTL838X_VLAN_PORT_TAG_STS_CTRL(port));
  1384. }
  1385. void rtl838x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode)
  1386. {
  1387. if (type == PBVLAN_TYPE_INNER)
  1388. sw_w32_mask(0x3, mode, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
  1389. else
  1390. sw_w32_mask(0x3 << 14, mode << 14, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
  1391. }
  1392. void rtl838x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid)
  1393. {
  1394. if (type == PBVLAN_TYPE_INNER)
  1395. sw_w32_mask(0xfff << 2, pvid << 2, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
  1396. else
  1397. sw_w32_mask(0xfff << 16, pvid << 16, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
  1398. }
  1399. static int rtl838x_set_ageing_time(unsigned long msec)
  1400. {
  1401. int t = sw_r32(RTL838X_L2_CTRL_1);
  1402. t &= 0x7FFFFF;
  1403. t = t * 128 / 625; /* Aging time in seconds. 0: L2 aging disabled */
  1404. pr_debug("L2 AGING time: %d sec\n", t);
  1405. t = (msec * 625 + 127000) / 128000;
  1406. t = t > 0x7FFFFF ? 0x7FFFFF : t;
  1407. sw_w32_mask(0x7FFFFF, t, RTL838X_L2_CTRL_1);
  1408. pr_debug("Dynamic aging for ports: %x\n", sw_r32(RTL838X_L2_PORT_AGING_OUT));
  1409. return 0;
  1410. }
  1411. static void rtl838x_set_igr_filter(int port, enum igr_filter state)
  1412. {
  1413. sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1),
  1414. RTL838X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2)));
  1415. }
  1416. static void rtl838x_set_egr_filter(int port, enum egr_filter state)
  1417. {
  1418. sw_w32_mask(0x1 << (port % 0x1d), state << (port % 0x1d),
  1419. RTL838X_VLAN_PORT_EGR_FLTR + (((port / 29) << 2)));
  1420. }
  1421. void rtl838x_set_distribution_algorithm(int group, int algoidx, u32 algomsk)
  1422. {
  1423. algoidx &= 1; /* RTL838X only supports 2 concurrent algorithms */
  1424. sw_w32_mask(1 << (group % 8), algoidx << (group % 8),
  1425. RTL838X_TRK_HASH_IDX_CTRL + ((group >> 3) << 2));
  1426. sw_w32(algomsk, RTL838X_TRK_HASH_CTRL + (algoidx << 2));
  1427. }
  1428. void rtl838x_set_receive_management_action(int port, rma_ctrl_t type, action_type_t action)
  1429. {
  1430. switch(type) {
  1431. case BPDU:
  1432. sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
  1433. RTL838X_RMA_BPDU_CTRL + ((port >> 4) << 2));
  1434. break;
  1435. case PTP:
  1436. sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
  1437. RTL838X_RMA_PTP_CTRL + ((port >> 4) << 2));
  1438. break;
  1439. case LLTP:
  1440. sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
  1441. RTL838X_RMA_LLTP_CTRL + ((port >> 4) << 2));
  1442. break;
  1443. default:
  1444. break;
  1445. }
  1446. }
  1447. const struct rtl838x_reg rtl838x_reg = {
  1448. .mask_port_reg_be = rtl838x_mask_port_reg,
  1449. .set_port_reg_be = rtl838x_set_port_reg,
  1450. .get_port_reg_be = rtl838x_get_port_reg,
  1451. .mask_port_reg_le = rtl838x_mask_port_reg,
  1452. .set_port_reg_le = rtl838x_set_port_reg,
  1453. .get_port_reg_le = rtl838x_get_port_reg,
  1454. .stat_port_rst = RTL838X_STAT_PORT_RST,
  1455. .stat_rst = RTL838X_STAT_RST,
  1456. .stat_port_std_mib = RTL838X_STAT_PORT_STD_MIB,
  1457. .port_iso_ctrl = rtl838x_port_iso_ctrl,
  1458. .traffic_enable = rtl838x_traffic_enable,
  1459. .traffic_disable = rtl838x_traffic_disable,
  1460. .traffic_get = rtl838x_traffic_get,
  1461. .traffic_set = rtl838x_traffic_set,
  1462. .l2_ctrl_0 = RTL838X_L2_CTRL_0,
  1463. .l2_ctrl_1 = RTL838X_L2_CTRL_1,
  1464. .l2_port_aging_out = RTL838X_L2_PORT_AGING_OUT,
  1465. .set_ageing_time = rtl838x_set_ageing_time,
  1466. .smi_poll_ctrl = RTL838X_SMI_POLL_CTRL,
  1467. .l2_tbl_flush_ctrl = RTL838X_L2_TBL_FLUSH_CTRL,
  1468. .exec_tbl0_cmd = rtl838x_exec_tbl0_cmd,
  1469. .exec_tbl1_cmd = rtl838x_exec_tbl1_cmd,
  1470. .tbl_access_data_0 = rtl838x_tbl_access_data_0,
  1471. .isr_glb_src = RTL838X_ISR_GLB_SRC,
  1472. .isr_port_link_sts_chg = RTL838X_ISR_PORT_LINK_STS_CHG,
  1473. .imr_port_link_sts_chg = RTL838X_IMR_PORT_LINK_STS_CHG,
  1474. .imr_glb = RTL838X_IMR_GLB,
  1475. .vlan_tables_read = rtl838x_vlan_tables_read,
  1476. .vlan_set_tagged = rtl838x_vlan_set_tagged,
  1477. .vlan_set_untagged = rtl838x_vlan_set_untagged,
  1478. .mac_force_mode_ctrl = rtl838x_mac_force_mode_ctrl,
  1479. .vlan_profile_dump = rtl838x_vlan_profile_dump,
  1480. .vlan_profile_setup = rtl838x_vlan_profile_setup,
  1481. .vlan_fwd_on_inner = rtl838x_vlan_fwd_on_inner,
  1482. .set_vlan_igr_filter = rtl838x_set_igr_filter,
  1483. .set_vlan_egr_filter = rtl838x_set_egr_filter,
  1484. .enable_learning = rtl838x_enable_learning,
  1485. .enable_flood = rtl838x_enable_flood,
  1486. .enable_mcast_flood = rtl838x_enable_mcast_flood,
  1487. .enable_bcast_flood = rtl838x_enable_bcast_flood,
  1488. .set_static_move_action = rtl838x_set_static_move_action,
  1489. .stp_get = rtl838x_stp_get,
  1490. .stp_set = rtl838x_stp_set,
  1491. .mac_port_ctrl = rtl838x_mac_port_ctrl,
  1492. .l2_port_new_salrn = rtl838x_l2_port_new_salrn,
  1493. .l2_port_new_sa_fwd = rtl838x_l2_port_new_sa_fwd,
  1494. .mir_ctrl = RTL838X_MIR_CTRL,
  1495. .mir_dpm = RTL838X_MIR_DPM_CTRL,
  1496. .mir_spm = RTL838X_MIR_SPM_CTRL,
  1497. .mac_link_sts = RTL838X_MAC_LINK_STS,
  1498. .mac_link_dup_sts = RTL838X_MAC_LINK_DUP_STS,
  1499. .mac_link_spd_sts = rtl838x_mac_link_spd_sts,
  1500. .mac_rx_pause_sts = RTL838X_MAC_RX_PAUSE_STS,
  1501. .mac_tx_pause_sts = RTL838X_MAC_TX_PAUSE_STS,
  1502. .read_l2_entry_using_hash = rtl838x_read_l2_entry_using_hash,
  1503. .write_l2_entry_using_hash = rtl838x_write_l2_entry_using_hash,
  1504. .read_cam = rtl838x_read_cam,
  1505. .write_cam = rtl838x_write_cam,
  1506. .vlan_port_keep_tag_set = rtl838x_vlan_port_keep_tag_set,
  1507. .vlan_port_pvidmode_set = rtl838x_vlan_port_pvidmode_set,
  1508. .vlan_port_pvid_set = rtl838x_vlan_port_pvid_set,
  1509. .trk_mbr_ctr = rtl838x_trk_mbr_ctr,
  1510. .rma_bpdu_fld_pmask = RTL838X_RMA_BPDU_FLD_PMSK,
  1511. .spcl_trap_eapol_ctrl = RTL838X_SPCL_TRAP_EAPOL_CTRL,
  1512. .init_eee = rtl838x_init_eee,
  1513. .port_eee_set = rtl838x_port_eee_set,
  1514. .eee_port_ability = rtl838x_eee_port_ability,
  1515. .l2_hash_seed = rtl838x_l2_hash_seed,
  1516. .l2_hash_key = rtl838x_l2_hash_key,
  1517. .read_mcast_pmask = rtl838x_read_mcast_pmask,
  1518. .write_mcast_pmask = rtl838x_write_mcast_pmask,
  1519. .pie_init = rtl838x_pie_init,
  1520. .pie_rule_read = rtl838x_pie_rule_read,
  1521. .pie_rule_write = rtl838x_pie_rule_write,
  1522. .pie_rule_add = rtl838x_pie_rule_add,
  1523. .pie_rule_rm = rtl838x_pie_rule_rm,
  1524. .l2_learning_setup = rtl838x_l2_learning_setup,
  1525. .packet_cntr_read = rtl838x_packet_cntr_read,
  1526. .packet_cntr_clear = rtl838x_packet_cntr_clear,
  1527. .route_read = rtl838x_route_read,
  1528. .route_write = rtl838x_route_write,
  1529. .l3_setup = rtl838x_l3_setup,
  1530. .set_distribution_algorithm = rtl838x_set_distribution_algorithm,
  1531. .set_receive_management_action = rtl838x_set_receive_management_action,
  1532. };
  1533. irqreturn_t rtl838x_switch_irq(int irq, void *dev_id)
  1534. {
  1535. struct dsa_switch *ds = dev_id;
  1536. u32 status = sw_r32(RTL838X_ISR_GLB_SRC);
  1537. u32 ports = sw_r32(RTL838X_ISR_PORT_LINK_STS_CHG);
  1538. u32 link;
  1539. /* Clear status */
  1540. sw_w32(ports, RTL838X_ISR_PORT_LINK_STS_CHG);
  1541. pr_info("RTL8380 Link change: status: %x, ports %x\n", status, ports);
  1542. for (int i = 0; i < 28; i++) {
  1543. if (ports & BIT(i)) {
  1544. link = sw_r32(RTL838X_MAC_LINK_STS);
  1545. if (link & BIT(i))
  1546. dsa_port_phylink_mac_change(ds, i, true);
  1547. else
  1548. dsa_port_phylink_mac_change(ds, i, false);
  1549. }
  1550. }
  1551. return IRQ_HANDLED;
  1552. }
  1553. int rtl838x_smi_wait_op(int timeout)
  1554. {
  1555. int ret = 0;
  1556. u32 val;
  1557. ret = readx_poll_timeout(sw_r32, RTL838X_SMI_ACCESS_PHY_CTRL_1,
  1558. val, !(val & 0x1), 20, timeout);
  1559. if (ret)
  1560. pr_err("%s: timeout\n", __func__);
  1561. return ret;
  1562. }
  1563. /* Reads a register in a page from the PHY */
  1564. int rtl838x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
  1565. {
  1566. int err;
  1567. u32 v;
  1568. u32 park_page;
  1569. if (port > 31) {
  1570. *val = 0xffff;
  1571. return 0;
  1572. }
  1573. if (page > 4095 || reg > 31)
  1574. return -ENOTSUPP;
  1575. mutex_lock(&smi_lock);
  1576. err = rtl838x_smi_wait_op(100000);
  1577. if (err)
  1578. goto errout;
  1579. sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
  1580. park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
  1581. v = reg << 20 | page << 3;
  1582. sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
  1583. sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
  1584. err = rtl838x_smi_wait_op(100000);
  1585. if (err)
  1586. goto errout;
  1587. *val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
  1588. err = 0;
  1589. errout:
  1590. mutex_unlock(&smi_lock);
  1591. return err;
  1592. }
  1593. /* Write to a register in a page of the PHY */
  1594. int rtl838x_write_phy(u32 port, u32 page, u32 reg, u32 val)
  1595. {
  1596. int err;
  1597. u32 v;
  1598. u32 park_page;
  1599. val &= 0xffff;
  1600. if (port > 31 || page > 4095 || reg > 31)
  1601. return -ENOTSUPP;
  1602. mutex_lock(&smi_lock);
  1603. err = rtl838x_smi_wait_op(100000);
  1604. if (err)
  1605. goto errout;
  1606. sw_w32(BIT(port), RTL838X_SMI_ACCESS_PHY_CTRL_0);
  1607. mdelay(10);
  1608. sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
  1609. park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
  1610. v = reg << 20 | page << 3 | 0x4;
  1611. sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
  1612. sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
  1613. err = rtl838x_smi_wait_op(100000);
  1614. if (err)
  1615. goto errout;
  1616. err = 0;
  1617. errout:
  1618. mutex_unlock(&smi_lock);
  1619. return err;
  1620. }
  1621. /* Read an mmd register of a PHY */
  1622. int rtl838x_read_mmd_phy(u32 port, u32 addr, u32 reg, u32 *val)
  1623. {
  1624. int err;
  1625. u32 v;
  1626. mutex_lock(&smi_lock);
  1627. err = rtl838x_smi_wait_op(100000);
  1628. if (err)
  1629. goto errout;
  1630. sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
  1631. mdelay(10);
  1632. sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
  1633. v = addr << 16 | reg;
  1634. sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_3);
  1635. /* mmd-access | read | cmd-start */
  1636. v = 1 << 1 | 0 << 2 | 1;
  1637. sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
  1638. err = rtl838x_smi_wait_op(100000);
  1639. if (err)
  1640. goto errout;
  1641. *val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
  1642. err = 0;
  1643. errout:
  1644. mutex_unlock(&smi_lock);
  1645. return err;
  1646. }
  1647. /* Write to an mmd register of a PHY */
  1648. int rtl838x_write_mmd_phy(u32 port, u32 addr, u32 reg, u32 val)
  1649. {
  1650. int err;
  1651. u32 v;
  1652. pr_debug("MMD write: port %d, dev %d, reg %d, val %x\n", port, addr, reg, val);
  1653. val &= 0xffff;
  1654. mutex_lock(&smi_lock);
  1655. err = rtl838x_smi_wait_op(100000);
  1656. if (err)
  1657. goto errout;
  1658. sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
  1659. mdelay(10);
  1660. sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
  1661. sw_w32_mask(0x1f << 16, addr << 16, RTL838X_SMI_ACCESS_PHY_CTRL_3);
  1662. sw_w32_mask(0xffff, reg, RTL838X_SMI_ACCESS_PHY_CTRL_3);
  1663. /* mmd-access | write | cmd-start */
  1664. v = 1 << 1 | 1 << 2 | 1;
  1665. sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
  1666. err = rtl838x_smi_wait_op(100000);
  1667. if (err)
  1668. goto errout;
  1669. err = 0;
  1670. errout:
  1671. mutex_unlock(&smi_lock);
  1672. return err;
  1673. }
  1674. void rtl8380_get_version(struct rtl838x_switch_priv *priv)
  1675. {
  1676. u32 rw_save, info_save;
  1677. u32 info;
  1678. rw_save = sw_r32(RTL838X_INT_RW_CTRL);
  1679. sw_w32(rw_save | 0x3, RTL838X_INT_RW_CTRL);
  1680. info_save = sw_r32(RTL838X_CHIP_INFO);
  1681. sw_w32(info_save | 0xA0000000, RTL838X_CHIP_INFO);
  1682. info = sw_r32(RTL838X_CHIP_INFO);
  1683. sw_w32(info_save, RTL838X_CHIP_INFO);
  1684. sw_w32(rw_save, RTL838X_INT_RW_CTRL);
  1685. if ((info & 0xFFFF) == 0x6275) {
  1686. if (((info >> 16) & 0x1F) == 0x1)
  1687. priv->version = RTL8380_VERSION_A;
  1688. else if (((info >> 16) & 0x1F) == 0x2)
  1689. priv->version = RTL8380_VERSION_B;
  1690. else
  1691. priv->version = RTL8380_VERSION_B;
  1692. } else {
  1693. priv->version = '-';
  1694. }
  1695. }
  1696. void rtl838x_vlan_profile_dump(int profile)
  1697. {
  1698. u32 p;
  1699. if (profile < 0 || profile > 7)
  1700. return;
  1701. p = sw_r32(RTL838X_VLAN_PROFILE(profile));
  1702. pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \
  1703. UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d",
  1704. profile, p & 1, (p >> 1) & 0x1ff, (p >> 10) & 0x1ff, (p >> 19) & 0x1ff);
  1705. }
  1706. void rtl8380_sds_rst(int mac)
  1707. {
  1708. u32 offset = (mac == 24) ? 0 : 0x100;
  1709. sw_w32_mask(1 << 11, 0, RTL838X_SDS4_FIB_REG0 + offset);
  1710. sw_w32_mask(0x3, 0, RTL838X_SDS4_REG28 + offset);
  1711. sw_w32_mask(0x3, 0x3, RTL838X_SDS4_REG28 + offset);
  1712. sw_w32_mask(0, 0x1 << 6, RTL838X_SDS4_DUMMY0 + offset);
  1713. sw_w32_mask(0x1 << 6, 0, RTL838X_SDS4_DUMMY0 + offset);
  1714. pr_debug("SERDES reset: %d\n", mac);
  1715. }
  1716. int rtl8380_sds_power(int mac, int val)
  1717. {
  1718. u32 mode = (val == 1) ? 0x4 : 0x9;
  1719. u32 offset = (mac == 24) ? 5 : 0;
  1720. if ((mac != 24) && (mac != 26)) {
  1721. pr_err("%s: not a fibre port: %d\n", __func__, mac);
  1722. return -1;
  1723. }
  1724. sw_w32_mask(0x1f << offset, mode << offset, RTL838X_SDS_MODE_SEL);
  1725. rtl8380_sds_rst(mac);
  1726. return 0;
  1727. }