hifn7751.c 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978
  1. /* $OpenBSD: hifn7751.c,v 1.120 2002/05/17 00:33:34 deraadt Exp $ */
  2. /*-
  3. * Invertex AEON / Hifn 7751 driver
  4. * Copyright (c) 1999 Invertex Inc. All rights reserved.
  5. * Copyright (c) 1999 Theo de Raadt
  6. * Copyright (c) 2000-2001 Network Security Technologies, Inc.
  7. * http://www.netsec.net
  8. * Copyright (c) 2003 Hifn Inc.
  9. *
  10. * This driver is based on a previous driver by Invertex, for which they
  11. * requested: Please send any comments, feedback, bug-fixes, or feature
  12. * requests to [email protected].
  13. *
  14. * Redistribution and use in source and binary forms, with or without
  15. * modification, are permitted provided that the following conditions
  16. * are met:
  17. *
  18. * 1. Redistributions of source code must retain the above copyright
  19. * notice, this list of conditions and the following disclaimer.
  20. * 2. Redistributions in binary form must reproduce the above copyright
  21. * notice, this list of conditions and the following disclaimer in the
  22. * documentation and/or other materials provided with the distribution.
  23. * 3. The name of the author may not be used to endorse or promote products
  24. * derived from this software without specific prior written permission.
  25. *
  26. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  27. * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  28. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  29. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  30. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  31. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  32. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  33. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  34. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  35. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36. *
  37. * Effort sponsored in part by the Defense Advanced Research Projects
  38. * Agency (DARPA) and Air Force Research Laboratory, Air Force
  39. * Materiel Command, USAF, under agreement number F30602-01-2-0537.
  40. *
  41. *
  42. __FBSDID("$FreeBSD: src/sys/dev/hifn/hifn7751.c,v 1.40 2007/03/21 03:42:49 sam Exp $");
  43. */
  44. /*
  45. * Driver for various Hifn encryption processors.
  46. */
  47. #ifndef AUTOCONF_INCLUDED
  48. #include <linux/config.h>
  49. #endif
  50. #include <linux/module.h>
  51. #include <linux/init.h>
  52. #include <linux/list.h>
  53. #include <linux/slab.h>
  54. #include <linux/wait.h>
  55. #include <linux/sched.h>
  56. #include <linux/pci.h>
  57. #include <linux/delay.h>
  58. #include <linux/interrupt.h>
  59. #include <linux/spinlock.h>
  60. #include <linux/random.h>
  61. #include <linux/version.h>
  62. #include <linux/skbuff.h>
  63. #include <asm/io.h>
  64. #include <cryptodev.h>
  65. #include <uio.h>
  66. #include <hifn/hifn7751reg.h>
  67. #include <hifn/hifn7751var.h>
  68. #if 1
  69. #define DPRINTF(a...) if (hifn_debug) { \
  70. printk("%s: ", sc ? \
  71. device_get_nameunit(sc->sc_dev) : "hifn"); \
  72. printk(a); \
  73. } else
  74. #else
  75. #define DPRINTF(a...)
  76. #endif
  77. static inline int
  78. pci_get_revid(struct pci_dev *dev)
  79. {
  80. u8 rid = 0;
  81. pci_read_config_byte(dev, PCI_REVISION_ID, &rid);
  82. return rid;
  83. }
  84. static struct hifn_stats hifnstats;
  85. #define debug hifn_debug
  86. int hifn_debug = 0;
  87. module_param(hifn_debug, int, 0644);
  88. MODULE_PARM_DESC(hifn_debug, "Enable debug");
  89. int hifn_maxbatch = 1;
  90. module_param(hifn_maxbatch, int, 0644);
  91. MODULE_PARM_DESC(hifn_maxbatch, "max ops to batch w/o interrupt");
  92. int hifn_cache_linesize = 0x10;
  93. module_param(hifn_cache_linesize, int, 0444);
  94. MODULE_PARM_DESC(hifn_cache_linesize, "PCI config cache line size");
  95. #ifdef MODULE_PARM
  96. char *hifn_pllconfig = NULL;
  97. MODULE_PARM(hifn_pllconfig, "s");
  98. #else
  99. char hifn_pllconfig[32]; /* This setting is RO after loading */
  100. module_param_string(hifn_pllconfig, hifn_pllconfig, 32, 0444);
  101. #endif
  102. MODULE_PARM_DESC(hifn_pllconfig, "PLL config, ie., pci66, ext33, ...");
  103. #ifdef HIFN_VULCANDEV
  104. #include <sys/conf.h>
  105. #include <sys/uio.h>
  106. static struct cdevsw vulcanpk_cdevsw; /* forward declaration */
  107. #endif
  108. /*
  109. * Prototypes and count for the pci_device structure
  110. */
  111. static int hifn_probe(struct pci_dev *dev, const struct pci_device_id *ent);
  112. static void hifn_remove(struct pci_dev *dev);
  113. static int hifn_newsession(device_t, u_int32_t *, struct cryptoini *);
  114. static int hifn_freesession(device_t, u_int64_t);
  115. static int hifn_process(device_t, struct cryptop *, int);
  116. static device_method_t hifn_methods = {
  117. /* crypto device methods */
  118. DEVMETHOD(cryptodev_newsession, hifn_newsession),
  119. DEVMETHOD(cryptodev_freesession,hifn_freesession),
  120. DEVMETHOD(cryptodev_process, hifn_process),
  121. };
  122. static void hifn_reset_board(struct hifn_softc *, int);
  123. static void hifn_reset_puc(struct hifn_softc *);
  124. static void hifn_puc_wait(struct hifn_softc *);
  125. static int hifn_enable_crypto(struct hifn_softc *);
  126. static void hifn_set_retry(struct hifn_softc *sc);
  127. static void hifn_init_dma(struct hifn_softc *);
  128. static void hifn_init_pci_registers(struct hifn_softc *);
  129. static int hifn_sramsize(struct hifn_softc *);
  130. static int hifn_dramsize(struct hifn_softc *);
  131. static int hifn_ramtype(struct hifn_softc *);
  132. static void hifn_sessions(struct hifn_softc *);
  133. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)
  134. static irqreturn_t hifn_intr(int irq, void *arg);
  135. #else
  136. static irqreturn_t hifn_intr(int irq, void *arg, struct pt_regs *regs);
  137. #endif
  138. static u_int hifn_write_command(struct hifn_command *, u_int8_t *);
  139. static u_int32_t hifn_next_signature(u_int32_t a, u_int cnt);
  140. static void hifn_callback(struct hifn_softc *, struct hifn_command *, u_int8_t *);
  141. static int hifn_crypto(struct hifn_softc *, struct hifn_command *, struct cryptop *, int);
  142. static int hifn_readramaddr(struct hifn_softc *, int, u_int8_t *);
  143. static int hifn_writeramaddr(struct hifn_softc *, int, u_int8_t *);
  144. static int hifn_dmamap_load_src(struct hifn_softc *, struct hifn_command *);
  145. static int hifn_dmamap_load_dst(struct hifn_softc *, struct hifn_command *);
  146. static int hifn_init_pubrng(struct hifn_softc *);
  147. static void hifn_tick(unsigned long arg);
  148. static void hifn_abort(struct hifn_softc *);
  149. static void hifn_alloc_slot(struct hifn_softc *, int *, int *, int *, int *);
  150. static void hifn_write_reg_0(struct hifn_softc *, bus_size_t, u_int32_t);
  151. static void hifn_write_reg_1(struct hifn_softc *, bus_size_t, u_int32_t);
  152. #ifdef CONFIG_OCF_RANDOMHARVEST
  153. static int hifn_read_random(void *arg, u_int32_t *buf, int len);
  154. #endif
  155. #define HIFN_MAX_CHIPS 8
  156. static struct hifn_softc *hifn_chip_idx[HIFN_MAX_CHIPS];
  157. static __inline u_int32_t
  158. READ_REG_0(struct hifn_softc *sc, bus_size_t reg)
  159. {
  160. u_int32_t v = readl(sc->sc_bar0 + reg);
  161. sc->sc_bar0_lastreg = (bus_size_t) -1;
  162. return (v);
  163. }
  164. #define WRITE_REG_0(sc, reg, val) hifn_write_reg_0(sc, reg, val)
  165. static __inline u_int32_t
  166. READ_REG_1(struct hifn_softc *sc, bus_size_t reg)
  167. {
  168. u_int32_t v = readl(sc->sc_bar1 + reg);
  169. sc->sc_bar1_lastreg = (bus_size_t) -1;
  170. return (v);
  171. }
  172. #define WRITE_REG_1(sc, reg, val) hifn_write_reg_1(sc, reg, val)
  173. /*
  174. * map in a given buffer (great on some arches :-)
  175. */
  176. static int
  177. pci_map_uio(struct hifn_softc *sc, struct hifn_operand *buf, struct uio *uio)
  178. {
  179. struct iovec *iov = uio->uio_iov;
  180. DPRINTF("%s()\n", __FUNCTION__);
  181. buf->mapsize = 0;
  182. for (buf->nsegs = 0; buf->nsegs < uio->uio_iovcnt; ) {
  183. buf->segs[buf->nsegs].ds_addr = pci_map_single(sc->sc_pcidev,
  184. iov->iov_base, iov->iov_len,
  185. PCI_DMA_BIDIRECTIONAL);
  186. buf->segs[buf->nsegs].ds_len = iov->iov_len;
  187. buf->mapsize += iov->iov_len;
  188. iov++;
  189. buf->nsegs++;
  190. }
  191. /* identify this buffer by the first segment */
  192. buf->map = (void *) buf->segs[0].ds_addr;
  193. return(0);
  194. }
  195. /*
  196. * map in a given sk_buff
  197. */
  198. static int
  199. pci_map_skb(struct hifn_softc *sc,struct hifn_operand *buf,struct sk_buff *skb)
  200. {
  201. int i;
  202. DPRINTF("%s()\n", __FUNCTION__);
  203. buf->mapsize = 0;
  204. buf->segs[0].ds_addr = pci_map_single(sc->sc_pcidev,
  205. skb->data, skb_headlen(skb), PCI_DMA_BIDIRECTIONAL);
  206. buf->segs[0].ds_len = skb_headlen(skb);
  207. buf->mapsize += buf->segs[0].ds_len;
  208. buf->nsegs = 1;
  209. for (i = 0; i < skb_shinfo(skb)->nr_frags; ) {
  210. buf->segs[buf->nsegs].ds_len = skb_shinfo(skb)->frags[i].size;
  211. buf->segs[buf->nsegs].ds_addr = pci_map_single(sc->sc_pcidev,
  212. page_address(skb_shinfo(skb)->frags[i].page) +
  213. skb_shinfo(skb)->frags[i].page_offset,
  214. buf->segs[buf->nsegs].ds_len, PCI_DMA_BIDIRECTIONAL);
  215. buf->mapsize += buf->segs[buf->nsegs].ds_len;
  216. buf->nsegs++;
  217. }
  218. /* identify this buffer by the first segment */
  219. buf->map = (void *) buf->segs[0].ds_addr;
  220. return(0);
  221. }
  222. /*
  223. * map in a given contiguous buffer
  224. */
  225. static int
  226. pci_map_buf(struct hifn_softc *sc,struct hifn_operand *buf, void *b, int len)
  227. {
  228. DPRINTF("%s()\n", __FUNCTION__);
  229. buf->mapsize = 0;
  230. buf->segs[0].ds_addr = pci_map_single(sc->sc_pcidev,
  231. b, len, PCI_DMA_BIDIRECTIONAL);
  232. buf->segs[0].ds_len = len;
  233. buf->mapsize += buf->segs[0].ds_len;
  234. buf->nsegs = 1;
  235. /* identify this buffer by the first segment */
  236. buf->map = (void *) buf->segs[0].ds_addr;
  237. return(0);
  238. }
  239. #if 0 /* not needed at this time */
  240. static void
  241. pci_sync_iov(struct hifn_softc *sc, struct hifn_operand *buf)
  242. {
  243. int i;
  244. DPRINTF("%s()\n", __FUNCTION__);
  245. for (i = 0; i < buf->nsegs; i++)
  246. pci_dma_sync_single_for_cpu(sc->sc_pcidev, buf->segs[i].ds_addr,
  247. buf->segs[i].ds_len, PCI_DMA_BIDIRECTIONAL);
  248. }
  249. #endif
  250. static void
  251. pci_unmap_buf(struct hifn_softc *sc, struct hifn_operand *buf)
  252. {
  253. int i;
  254. DPRINTF("%s()\n", __FUNCTION__);
  255. for (i = 0; i < buf->nsegs; i++) {
  256. pci_unmap_single(sc->sc_pcidev, buf->segs[i].ds_addr,
  257. buf->segs[i].ds_len, PCI_DMA_BIDIRECTIONAL);
  258. buf->segs[i].ds_addr = 0;
  259. buf->segs[i].ds_len = 0;
  260. }
  261. buf->nsegs = 0;
  262. buf->mapsize = 0;
  263. buf->map = 0;
  264. }
  265. static const char*
  266. hifn_partname(struct hifn_softc *sc)
  267. {
  268. /* XXX sprintf numbers when not decoded */
  269. switch (pci_get_vendor(sc->sc_pcidev)) {
  270. case PCI_VENDOR_HIFN:
  271. switch (pci_get_device(sc->sc_pcidev)) {
  272. case PCI_PRODUCT_HIFN_6500: return "Hifn 6500";
  273. case PCI_PRODUCT_HIFN_7751: return "Hifn 7751";
  274. case PCI_PRODUCT_HIFN_7811: return "Hifn 7811";
  275. case PCI_PRODUCT_HIFN_7951: return "Hifn 7951";
  276. case PCI_PRODUCT_HIFN_7955: return "Hifn 7955";
  277. case PCI_PRODUCT_HIFN_7956: return "Hifn 7956";
  278. }
  279. return "Hifn unknown-part";
  280. case PCI_VENDOR_INVERTEX:
  281. switch (pci_get_device(sc->sc_pcidev)) {
  282. case PCI_PRODUCT_INVERTEX_AEON: return "Invertex AEON";
  283. }
  284. return "Invertex unknown-part";
  285. case PCI_VENDOR_NETSEC:
  286. switch (pci_get_device(sc->sc_pcidev)) {
  287. case PCI_PRODUCT_NETSEC_7751: return "NetSec 7751";
  288. }
  289. return "NetSec unknown-part";
  290. }
  291. return "Unknown-vendor unknown-part";
  292. }
  293. static u_int
  294. checkmaxmin(struct pci_dev *dev, const char *what, u_int v, u_int min, u_int max)
  295. {
  296. struct hifn_softc *sc = pci_get_drvdata(dev);
  297. if (v > max) {
  298. device_printf(sc->sc_dev, "Warning, %s %u out of range, "
  299. "using max %u\n", what, v, max);
  300. v = max;
  301. } else if (v < min) {
  302. device_printf(sc->sc_dev, "Warning, %s %u out of range, "
  303. "using min %u\n", what, v, min);
  304. v = min;
  305. }
  306. return v;
  307. }
  308. /*
  309. * Select PLL configuration for 795x parts. This is complicated in
  310. * that we cannot determine the optimal parameters without user input.
  311. * The reference clock is derived from an external clock through a
  312. * multiplier. The external clock is either the host bus (i.e. PCI)
  313. * or an external clock generator. When using the PCI bus we assume
  314. * the clock is either 33 or 66 MHz; for an external source we cannot
  315. * tell the speed.
  316. *
  317. * PLL configuration is done with a string: "pci" for PCI bus, or "ext"
  318. * for an external source, followed by the frequency. We calculate
  319. * the appropriate multiplier and PLL register contents accordingly.
  320. * When no configuration is given we default to "pci66" since that
  321. * always will allow the card to work. If a card is using the PCI
  322. * bus clock and in a 33MHz slot then it will be operating at half
  323. * speed until the correct information is provided.
  324. *
  325. * We use a default setting of "ext66" because according to Mike Ham
  326. * of HiFn, almost every board in existence has an external crystal
  327. * populated at 66Mhz. Using PCI can be a problem on modern motherboards,
  328. * because PCI33 can have clocks from 0 to 33Mhz, and some have
  329. * non-PCI-compliant spread-spectrum clocks, which can confuse the pll.
  330. */
  331. static void
  332. hifn_getpllconfig(struct pci_dev *dev, u_int *pll)
  333. {
  334. const char *pllspec = hifn_pllconfig;
  335. u_int freq, mul, fl, fh;
  336. u_int32_t pllconfig;
  337. char *nxt;
  338. if (pllspec == NULL)
  339. pllspec = "ext66";
  340. fl = 33, fh = 66;
  341. pllconfig = 0;
  342. if (strncmp(pllspec, "ext", 3) == 0) {
  343. pllspec += 3;
  344. pllconfig |= HIFN_PLL_REF_SEL;
  345. switch (pci_get_device(dev)) {
  346. case PCI_PRODUCT_HIFN_7955:
  347. case PCI_PRODUCT_HIFN_7956:
  348. fl = 20, fh = 100;
  349. break;
  350. #ifdef notyet
  351. case PCI_PRODUCT_HIFN_7954:
  352. fl = 20, fh = 66;
  353. break;
  354. #endif
  355. }
  356. } else if (strncmp(pllspec, "pci", 3) == 0)
  357. pllspec += 3;
  358. freq = strtoul(pllspec, &nxt, 10);
  359. if (nxt == pllspec)
  360. freq = 66;
  361. else
  362. freq = checkmaxmin(dev, "frequency", freq, fl, fh);
  363. /*
  364. * Calculate multiplier. We target a Fck of 266 MHz,
  365. * allowing only even values, possibly rounded down.
  366. * Multipliers > 8 must set the charge pump current.
  367. */
  368. mul = checkmaxmin(dev, "PLL divisor", (266 / freq) &~ 1, 2, 12);
  369. pllconfig |= (mul / 2 - 1) << HIFN_PLL_ND_SHIFT;
  370. if (mul > 8)
  371. pllconfig |= HIFN_PLL_IS;
  372. *pll = pllconfig;
  373. }
  374. /*
  375. * Attach an interface that successfully probed.
  376. */
  377. static int
  378. hifn_probe(struct pci_dev *dev, const struct pci_device_id *ent)
  379. {
  380. struct hifn_softc *sc = NULL;
  381. char rbase;
  382. u_int16_t ena, rev;
  383. int rseg, rc;
  384. unsigned long mem_start, mem_len;
  385. static int num_chips = 0;
  386. DPRINTF("%s()\n", __FUNCTION__);
  387. if (pci_enable_device(dev) < 0)
  388. return(-ENODEV);
  389. #ifdef CONFIG_HAVE_PCI_SET_MWI
  390. if (pci_set_mwi(dev))
  391. return(-ENODEV);
  392. #endif
  393. if (!dev->irq) {
  394. printk("hifn: found device with no IRQ assigned. check BIOS settings!");
  395. pci_disable_device(dev);
  396. return(-ENODEV);
  397. }
  398. sc = (struct hifn_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
  399. if (!sc)
  400. return(-ENOMEM);
  401. memset(sc, 0, sizeof(*sc));
  402. softc_device_init(sc, "hifn", num_chips, hifn_methods);
  403. sc->sc_pcidev = dev;
  404. sc->sc_irq = -1;
  405. sc->sc_cid = -1;
  406. sc->sc_num = num_chips++;
  407. if (sc->sc_num < HIFN_MAX_CHIPS)
  408. hifn_chip_idx[sc->sc_num] = sc;
  409. pci_set_drvdata(sc->sc_pcidev, sc);
  410. spin_lock_init(&sc->sc_mtx);
  411. /* XXX handle power management */
  412. /*
  413. * The 7951 and 795x have a random number generator and
  414. * public key support; note this.
  415. */
  416. if (pci_get_vendor(dev) == PCI_VENDOR_HIFN &&
  417. (pci_get_device(dev) == PCI_PRODUCT_HIFN_7951 ||
  418. pci_get_device(dev) == PCI_PRODUCT_HIFN_7955 ||
  419. pci_get_device(dev) == PCI_PRODUCT_HIFN_7956))
  420. sc->sc_flags = HIFN_HAS_RNG | HIFN_HAS_PUBLIC;
  421. /*
  422. * The 7811 has a random number generator and
  423. * we also note it's identity 'cuz of some quirks.
  424. */
  425. if (pci_get_vendor(dev) == PCI_VENDOR_HIFN &&
  426. pci_get_device(dev) == PCI_PRODUCT_HIFN_7811)
  427. sc->sc_flags |= HIFN_IS_7811 | HIFN_HAS_RNG;
  428. /*
  429. * The 795x parts support AES.
  430. */
  431. if (pci_get_vendor(dev) == PCI_VENDOR_HIFN &&
  432. (pci_get_device(dev) == PCI_PRODUCT_HIFN_7955 ||
  433. pci_get_device(dev) == PCI_PRODUCT_HIFN_7956)) {
  434. sc->sc_flags |= HIFN_IS_7956 | HIFN_HAS_AES;
  435. /*
  436. * Select PLL configuration. This depends on the
  437. * bus and board design and must be manually configured
  438. * if the default setting is unacceptable.
  439. */
  440. hifn_getpllconfig(dev, &sc->sc_pllconfig);
  441. }
  442. /*
  443. * Setup PCI resources. Note that we record the bus
  444. * tag and handle for each register mapping, this is
  445. * used by the READ_REG_0, WRITE_REG_0, READ_REG_1,
  446. * and WRITE_REG_1 macros throughout the driver.
  447. */
  448. mem_start = pci_resource_start(sc->sc_pcidev, 0);
  449. mem_len = pci_resource_len(sc->sc_pcidev, 0);
  450. sc->sc_bar0 = (ocf_iomem_t) ioremap(mem_start, mem_len);
  451. if (!sc->sc_bar0) {
  452. device_printf(sc->sc_dev, "cannot map bar%d register space\n", 0);
  453. goto fail;
  454. }
  455. sc->sc_bar0_lastreg = (bus_size_t) -1;
  456. mem_start = pci_resource_start(sc->sc_pcidev, 1);
  457. mem_len = pci_resource_len(sc->sc_pcidev, 1);
  458. sc->sc_bar1 = (ocf_iomem_t) ioremap(mem_start, mem_len);
  459. if (!sc->sc_bar1) {
  460. device_printf(sc->sc_dev, "cannot map bar%d register space\n", 1);
  461. goto fail;
  462. }
  463. sc->sc_bar1_lastreg = (bus_size_t) -1;
  464. /* fix up the bus size */
  465. if (pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
  466. device_printf(sc->sc_dev, "No usable DMA configuration, aborting.\n");
  467. goto fail;
  468. }
  469. if (pci_set_consistent_dma_mask(dev, DMA_32BIT_MASK)) {
  470. device_printf(sc->sc_dev,
  471. "No usable consistent DMA configuration, aborting.\n");
  472. goto fail;
  473. }
  474. hifn_set_retry(sc);
  475. /*
  476. * Setup the area where the Hifn DMA's descriptors
  477. * and associated data structures.
  478. */
  479. sc->sc_dma = (struct hifn_dma *) pci_alloc_consistent(dev,
  480. sizeof(*sc->sc_dma),
  481. &sc->sc_dma_physaddr);
  482. if (!sc->sc_dma) {
  483. device_printf(sc->sc_dev, "cannot alloc sc_dma\n");
  484. goto fail;
  485. }
  486. bzero(sc->sc_dma, sizeof(*sc->sc_dma));
  487. /*
  488. * Reset the board and do the ``secret handshake''
  489. * to enable the crypto support. Then complete the
  490. * initialization procedure by setting up the interrupt
  491. * and hooking in to the system crypto support so we'll
  492. * get used for system services like the crypto device,
  493. * IPsec, RNG device, etc.
  494. */
  495. hifn_reset_board(sc, 0);
  496. if (hifn_enable_crypto(sc) != 0) {
  497. device_printf(sc->sc_dev, "crypto enabling failed\n");
  498. goto fail;
  499. }
  500. hifn_reset_puc(sc);
  501. hifn_init_dma(sc);
  502. hifn_init_pci_registers(sc);
  503. pci_set_master(sc->sc_pcidev);
  504. /* XXX can't dynamically determine ram type for 795x; force dram */
  505. if (sc->sc_flags & HIFN_IS_7956)
  506. sc->sc_drammodel = 1;
  507. else if (hifn_ramtype(sc))
  508. goto fail;
  509. if (sc->sc_drammodel == 0)
  510. hifn_sramsize(sc);
  511. else
  512. hifn_dramsize(sc);
  513. /*
  514. * Workaround for NetSec 7751 rev A: half ram size because two
  515. * of the address lines were left floating
  516. */
  517. if (pci_get_vendor(dev) == PCI_VENDOR_NETSEC &&
  518. pci_get_device(dev) == PCI_PRODUCT_NETSEC_7751 &&
  519. pci_get_revid(dev) == 0x61) /*XXX???*/
  520. sc->sc_ramsize >>= 1;
  521. /*
  522. * Arrange the interrupt line.
  523. */
  524. rc = request_irq(dev->irq, hifn_intr, IRQF_SHARED, "hifn", sc);
  525. if (rc) {
  526. device_printf(sc->sc_dev, "could not map interrupt: %d\n", rc);
  527. goto fail;
  528. }
  529. sc->sc_irq = dev->irq;
  530. hifn_sessions(sc);
  531. /*
  532. * NB: Keep only the low 16 bits; this masks the chip id
  533. * from the 7951.
  534. */
  535. rev = READ_REG_1(sc, HIFN_1_REVID) & 0xffff;
  536. rseg = sc->sc_ramsize / 1024;
  537. rbase = 'K';
  538. if (sc->sc_ramsize >= (1024 * 1024)) {
  539. rbase = 'M';
  540. rseg /= 1024;
  541. }
  542. device_printf(sc->sc_dev, "%s, rev %u, %d%cB %cram",
  543. hifn_partname(sc), rev,
  544. rseg, rbase, sc->sc_drammodel ? 'd' : 's');
  545. if (sc->sc_flags & HIFN_IS_7956)
  546. printf(", pll=0x%x<%s clk, %ux mult>",
  547. sc->sc_pllconfig,
  548. sc->sc_pllconfig & HIFN_PLL_REF_SEL ? "ext" : "pci",
  549. 2 + 2*((sc->sc_pllconfig & HIFN_PLL_ND) >> 11));
  550. printf("\n");
  551. sc->sc_cid = crypto_get_driverid(softc_get_device(sc),CRYPTOCAP_F_HARDWARE);
  552. if (sc->sc_cid < 0) {
  553. device_printf(sc->sc_dev, "could not get crypto driver id\n");
  554. goto fail;
  555. }
  556. WRITE_REG_0(sc, HIFN_0_PUCNFG,
  557. READ_REG_0(sc, HIFN_0_PUCNFG) | HIFN_PUCNFG_CHIPID);
  558. ena = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
  559. switch (ena) {
  560. case HIFN_PUSTAT_ENA_2:
  561. crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
  562. crypto_register(sc->sc_cid, CRYPTO_ARC4, 0, 0);
  563. if (sc->sc_flags & HIFN_HAS_AES)
  564. crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
  565. /*FALLTHROUGH*/
  566. case HIFN_PUSTAT_ENA_1:
  567. crypto_register(sc->sc_cid, CRYPTO_MD5, 0, 0);
  568. crypto_register(sc->sc_cid, CRYPTO_SHA1, 0, 0);
  569. crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
  570. crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
  571. crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
  572. break;
  573. }
  574. if (sc->sc_flags & (HIFN_HAS_PUBLIC | HIFN_HAS_RNG))
  575. hifn_init_pubrng(sc);
  576. init_timer(&sc->sc_tickto);
  577. sc->sc_tickto.function = hifn_tick;
  578. sc->sc_tickto.data = (unsigned long) sc->sc_num;
  579. mod_timer(&sc->sc_tickto, jiffies + HZ);
  580. return (0);
  581. fail:
  582. if (sc->sc_cid >= 0)
  583. crypto_unregister_all(sc->sc_cid);
  584. if (sc->sc_irq != -1)
  585. free_irq(sc->sc_irq, sc);
  586. if (sc->sc_dma) {
  587. /* Turn off DMA polling */
  588. WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
  589. HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
  590. pci_free_consistent(sc->sc_pcidev,
  591. sizeof(*sc->sc_dma),
  592. sc->sc_dma, sc->sc_dma_physaddr);
  593. }
  594. kfree(sc);
  595. return (-ENXIO);
  596. }
  597. /*
  598. * Detach an interface that successfully probed.
  599. */
  600. static void
  601. hifn_remove(struct pci_dev *dev)
  602. {
  603. struct hifn_softc *sc = pci_get_drvdata(dev);
  604. unsigned long l_flags;
  605. DPRINTF("%s()\n", __FUNCTION__);
  606. KASSERT(sc != NULL, ("hifn_detach: null software carrier!"));
  607. /* disable interrupts */
  608. HIFN_LOCK(sc);
  609. WRITE_REG_1(sc, HIFN_1_DMA_IER, 0);
  610. HIFN_UNLOCK(sc);
  611. /*XXX other resources */
  612. del_timer_sync(&sc->sc_tickto);
  613. /* Turn off DMA polling */
  614. WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
  615. HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
  616. crypto_unregister_all(sc->sc_cid);
  617. free_irq(sc->sc_irq, sc);
  618. pci_free_consistent(sc->sc_pcidev, sizeof(*sc->sc_dma),
  619. sc->sc_dma, sc->sc_dma_physaddr);
  620. }
  621. static int
  622. hifn_init_pubrng(struct hifn_softc *sc)
  623. {
  624. int i;
  625. DPRINTF("%s()\n", __FUNCTION__);
  626. if ((sc->sc_flags & HIFN_IS_7811) == 0) {
  627. /* Reset 7951 public key/rng engine */
  628. WRITE_REG_1(sc, HIFN_1_PUB_RESET,
  629. READ_REG_1(sc, HIFN_1_PUB_RESET) | HIFN_PUBRST_RESET);
  630. for (i = 0; i < 100; i++) {
  631. DELAY(1000);
  632. if ((READ_REG_1(sc, HIFN_1_PUB_RESET) &
  633. HIFN_PUBRST_RESET) == 0)
  634. break;
  635. }
  636. if (i == 100) {
  637. device_printf(sc->sc_dev, "public key init failed\n");
  638. return (1);
  639. }
  640. }
  641. /* Enable the rng, if available */
  642. #ifdef CONFIG_OCF_RANDOMHARVEST
  643. if (sc->sc_flags & HIFN_HAS_RNG) {
  644. if (sc->sc_flags & HIFN_IS_7811) {
  645. u_int32_t r;
  646. r = READ_REG_1(sc, HIFN_1_7811_RNGENA);
  647. if (r & HIFN_7811_RNGENA_ENA) {
  648. r &= ~HIFN_7811_RNGENA_ENA;
  649. WRITE_REG_1(sc, HIFN_1_7811_RNGENA, r);
  650. }
  651. WRITE_REG_1(sc, HIFN_1_7811_RNGCFG,
  652. HIFN_7811_RNGCFG_DEFL);
  653. r |= HIFN_7811_RNGENA_ENA;
  654. WRITE_REG_1(sc, HIFN_1_7811_RNGENA, r);
  655. } else
  656. WRITE_REG_1(sc, HIFN_1_RNG_CONFIG,
  657. READ_REG_1(sc, HIFN_1_RNG_CONFIG) |
  658. HIFN_RNGCFG_ENA);
  659. sc->sc_rngfirst = 1;
  660. crypto_rregister(sc->sc_cid, hifn_read_random, sc);
  661. }
  662. #endif
  663. /* Enable public key engine, if available */
  664. if (sc->sc_flags & HIFN_HAS_PUBLIC) {
  665. WRITE_REG_1(sc, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
  666. sc->sc_dmaier |= HIFN_DMAIER_PUBDONE;
  667. WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
  668. #ifdef HIFN_VULCANDEV
  669. sc->sc_pkdev = make_dev(&vulcanpk_cdevsw, 0,
  670. UID_ROOT, GID_WHEEL, 0666,
  671. "vulcanpk");
  672. sc->sc_pkdev->si_drv1 = sc;
  673. #endif
  674. }
  675. return (0);
  676. }
  677. #ifdef CONFIG_OCF_RANDOMHARVEST
  678. static int
  679. hifn_read_random(void *arg, u_int32_t *buf, int len)
  680. {
  681. struct hifn_softc *sc = (struct hifn_softc *) arg;
  682. u_int32_t sts;
  683. int i, rc = 0;
  684. if (len <= 0)
  685. return rc;
  686. if (sc->sc_flags & HIFN_IS_7811) {
  687. /* ONLY VALID ON 7811!!!! */
  688. for (i = 0; i < 5; i++) {
  689. sts = READ_REG_1(sc, HIFN_1_7811_RNGSTS);
  690. if (sts & HIFN_7811_RNGSTS_UFL) {
  691. device_printf(sc->sc_dev,
  692. "RNG underflow: disabling\n");
  693. /* DAVIDM perhaps return -1 */
  694. break;
  695. }
  696. if ((sts & HIFN_7811_RNGSTS_RDY) == 0)
  697. break;
  698. /*
  699. * There are at least two words in the RNG FIFO
  700. * at this point.
  701. */
  702. if (rc < len)
  703. buf[rc++] = READ_REG_1(sc, HIFN_1_7811_RNGDAT);
  704. if (rc < len)
  705. buf[rc++] = READ_REG_1(sc, HIFN_1_7811_RNGDAT);
  706. }
  707. } else
  708. buf[rc++] = READ_REG_1(sc, HIFN_1_RNG_DATA);
  709. /* NB: discard first data read */
  710. if (sc->sc_rngfirst) {
  711. sc->sc_rngfirst = 0;
  712. rc = 0;
  713. }
  714. return(rc);
  715. }
  716. #endif /* CONFIG_OCF_RANDOMHARVEST */
  717. static void
  718. hifn_puc_wait(struct hifn_softc *sc)
  719. {
  720. int i;
  721. int reg = HIFN_0_PUCTRL;
  722. if (sc->sc_flags & HIFN_IS_7956) {
  723. reg = HIFN_0_PUCTRL2;
  724. }
  725. for (i = 5000; i > 0; i--) {
  726. DELAY(1);
  727. if (!(READ_REG_0(sc, reg) & HIFN_PUCTRL_RESET))
  728. break;
  729. }
  730. if (!i)
  731. device_printf(sc->sc_dev, "proc unit did not reset(0x%x)\n",
  732. READ_REG_0(sc, HIFN_0_PUCTRL));
  733. }
  734. /*
  735. * Reset the processing unit.
  736. */
  737. static void
  738. hifn_reset_puc(struct hifn_softc *sc)
  739. {
  740. /* Reset processing unit */
  741. int reg = HIFN_0_PUCTRL;
  742. if (sc->sc_flags & HIFN_IS_7956) {
  743. reg = HIFN_0_PUCTRL2;
  744. }
  745. WRITE_REG_0(sc, reg, HIFN_PUCTRL_DMAENA);
  746. hifn_puc_wait(sc);
  747. }
  748. /*
  749. * Set the Retry and TRDY registers; note that we set them to
  750. * zero because the 7811 locks up when forced to retry (section
  751. * 3.6 of "Specification Update SU-0014-04". Not clear if we
  752. * should do this for all Hifn parts, but it doesn't seem to hurt.
  753. */
  754. static void
  755. hifn_set_retry(struct hifn_softc *sc)
  756. {
  757. DPRINTF("%s()\n", __FUNCTION__);
  758. /* NB: RETRY only responds to 8-bit reads/writes */
  759. pci_write_config_byte(sc->sc_pcidev, HIFN_RETRY_TIMEOUT, 0);
  760. pci_write_config_dword(sc->sc_pcidev, HIFN_TRDY_TIMEOUT, 0);
  761. /* piggy back the cache line setting here */
  762. pci_write_config_byte(sc->sc_pcidev, PCI_CACHE_LINE_SIZE, hifn_cache_linesize);
  763. }
  764. /*
  765. * Resets the board. Values in the regesters are left as is
  766. * from the reset (i.e. initial values are assigned elsewhere).
  767. */
  768. static void
  769. hifn_reset_board(struct hifn_softc *sc, int full)
  770. {
  771. u_int32_t reg;
  772. DPRINTF("%s()\n", __FUNCTION__);
  773. /*
  774. * Set polling in the DMA configuration register to zero. 0x7 avoids
  775. * resetting the board and zeros out the other fields.
  776. */
  777. WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
  778. HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
  779. /*
  780. * Now that polling has been disabled, we have to wait 1 ms
  781. * before resetting the board.
  782. */
  783. DELAY(1000);
  784. /* Reset the DMA unit */
  785. if (full) {
  786. WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
  787. DELAY(1000);
  788. } else {
  789. WRITE_REG_1(sc, HIFN_1_DMA_CNFG,
  790. HIFN_DMACNFG_MODE | HIFN_DMACNFG_MSTRESET);
  791. hifn_reset_puc(sc);
  792. }
  793. KASSERT(sc->sc_dma != NULL, ("hifn_reset_board: null DMA tag!"));
  794. bzero(sc->sc_dma, sizeof(*sc->sc_dma));
  795. /* Bring dma unit out of reset */
  796. WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
  797. HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
  798. hifn_puc_wait(sc);
  799. hifn_set_retry(sc);
  800. if (sc->sc_flags & HIFN_IS_7811) {
  801. for (reg = 0; reg < 1000; reg++) {
  802. if (READ_REG_1(sc, HIFN_1_7811_MIPSRST) &
  803. HIFN_MIPSRST_CRAMINIT)
  804. break;
  805. DELAY(1000);
  806. }
  807. if (reg == 1000)
  808. device_printf(sc->sc_dev, ": cram init timeout\n");
  809. } else {
  810. /* set up DMA configuration register #2 */
  811. /* turn off all PK and BAR0 swaps */
  812. WRITE_REG_1(sc, HIFN_1_DMA_CNFG2,
  813. (3 << HIFN_DMACNFG2_INIT_WRITE_BURST_SHIFT)|
  814. (3 << HIFN_DMACNFG2_INIT_READ_BURST_SHIFT)|
  815. (2 << HIFN_DMACNFG2_TGT_WRITE_BURST_SHIFT)|
  816. (2 << HIFN_DMACNFG2_TGT_READ_BURST_SHIFT));
  817. }
  818. }
  819. static u_int32_t
  820. hifn_next_signature(u_int32_t a, u_int cnt)
  821. {
  822. int i;
  823. u_int32_t v;
  824. for (i = 0; i < cnt; i++) {
  825. /* get the parity */
  826. v = a & 0x80080125;
  827. v ^= v >> 16;
  828. v ^= v >> 8;
  829. v ^= v >> 4;
  830. v ^= v >> 2;
  831. v ^= v >> 1;
  832. a = (v & 1) ^ (a << 1);
  833. }
  834. return a;
  835. }
  836. /*
  837. * Checks to see if crypto is already enabled. If crypto isn't enable,
  838. * "hifn_enable_crypto" is called to enable it. The check is important,
  839. * as enabling crypto twice will lock the board.
  840. */
  841. static int
  842. hifn_enable_crypto(struct hifn_softc *sc)
  843. {
  844. u_int32_t dmacfg, ramcfg, encl, addr, i;
  845. char offtbl[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  846. 0x00, 0x00, 0x00, 0x00 };
  847. DPRINTF("%s()\n", __FUNCTION__);
  848. ramcfg = READ_REG_0(sc, HIFN_0_PUCNFG);
  849. dmacfg = READ_REG_1(sc, HIFN_1_DMA_CNFG);
  850. /*
  851. * The RAM config register's encrypt level bit needs to be set before
  852. * every read performed on the encryption level register.
  853. */
  854. WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg | HIFN_PUCNFG_CHIPID);
  855. encl = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
  856. /*
  857. * Make sure we don't re-unlock. Two unlocks kills chip until the
  858. * next reboot.
  859. */
  860. if (encl == HIFN_PUSTAT_ENA_1 || encl == HIFN_PUSTAT_ENA_2) {
  861. #ifdef HIFN_DEBUG
  862. if (hifn_debug)
  863. device_printf(sc->sc_dev,
  864. "Strong crypto already enabled!\n");
  865. #endif
  866. goto report;
  867. }
  868. if (encl != 0 && encl != HIFN_PUSTAT_ENA_0) {
  869. #ifdef HIFN_DEBUG
  870. if (hifn_debug)
  871. device_printf(sc->sc_dev,
  872. "Unknown encryption level 0x%x\n", encl);
  873. #endif
  874. return 1;
  875. }
  876. WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_UNLOCK |
  877. HIFN_DMACNFG_MSTRESET | HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
  878. DELAY(1000);
  879. addr = READ_REG_1(sc, HIFN_UNLOCK_SECRET1);
  880. DELAY(1000);
  881. WRITE_REG_1(sc, HIFN_UNLOCK_SECRET2, 0);
  882. DELAY(1000);
  883. for (i = 0; i <= 12; i++) {
  884. addr = hifn_next_signature(addr, offtbl[i] + 0x101);
  885. WRITE_REG_1(sc, HIFN_UNLOCK_SECRET2, addr);
  886. DELAY(1000);
  887. }
  888. WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg | HIFN_PUCNFG_CHIPID);
  889. encl = READ_REG_0(sc, HIFN_0_PUSTAT) & HIFN_PUSTAT_CHIPENA;
  890. #ifdef HIFN_DEBUG
  891. if (hifn_debug) {
  892. if (encl != HIFN_PUSTAT_ENA_1 && encl != HIFN_PUSTAT_ENA_2)
  893. device_printf(sc->sc_dev, "Engine is permanently "
  894. "locked until next system reset!\n");
  895. else
  896. device_printf(sc->sc_dev, "Engine enabled "
  897. "successfully!\n");
  898. }
  899. #endif
  900. report:
  901. WRITE_REG_0(sc, HIFN_0_PUCNFG, ramcfg);
  902. WRITE_REG_1(sc, HIFN_1_DMA_CNFG, dmacfg);
  903. switch (encl) {
  904. case HIFN_PUSTAT_ENA_1:
  905. case HIFN_PUSTAT_ENA_2:
  906. break;
  907. case HIFN_PUSTAT_ENA_0:
  908. default:
  909. device_printf(sc->sc_dev, "disabled\n");
  910. break;
  911. }
  912. return 0;
  913. }
  914. /*
  915. * Give initial values to the registers listed in the "Register Space"
  916. * section of the HIFN Software Development reference manual.
  917. */
  918. static void
  919. hifn_init_pci_registers(struct hifn_softc *sc)
  920. {
  921. DPRINTF("%s()\n", __FUNCTION__);
  922. /* write fixed values needed by the Initialization registers */
  923. WRITE_REG_0(sc, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
  924. WRITE_REG_0(sc, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
  925. WRITE_REG_0(sc, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
  926. /* write all 4 ring address registers */
  927. WRITE_REG_1(sc, HIFN_1_DMA_CRAR, sc->sc_dma_physaddr +
  928. offsetof(struct hifn_dma, cmdr[0]));
  929. WRITE_REG_1(sc, HIFN_1_DMA_SRAR, sc->sc_dma_physaddr +
  930. offsetof(struct hifn_dma, srcr[0]));
  931. WRITE_REG_1(sc, HIFN_1_DMA_DRAR, sc->sc_dma_physaddr +
  932. offsetof(struct hifn_dma, dstr[0]));
  933. WRITE_REG_1(sc, HIFN_1_DMA_RRAR, sc->sc_dma_physaddr +
  934. offsetof(struct hifn_dma, resr[0]));
  935. DELAY(2000);
  936. /* write status register */
  937. WRITE_REG_1(sc, HIFN_1_DMA_CSR,
  938. HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
  939. HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
  940. HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
  941. HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
  942. HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
  943. HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
  944. HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
  945. HIFN_DMACSR_S_WAIT |
  946. HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
  947. HIFN_DMACSR_C_WAIT |
  948. HIFN_DMACSR_ENGINE |
  949. ((sc->sc_flags & HIFN_HAS_PUBLIC) ?
  950. HIFN_DMACSR_PUBDONE : 0) |
  951. ((sc->sc_flags & HIFN_IS_7811) ?
  952. HIFN_DMACSR_ILLW | HIFN_DMACSR_ILLR : 0));
  953. sc->sc_d_busy = sc->sc_r_busy = sc->sc_s_busy = sc->sc_c_busy = 0;
  954. sc->sc_dmaier |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
  955. HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
  956. HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
  957. ((sc->sc_flags & HIFN_IS_7811) ?
  958. HIFN_DMAIER_ILLW | HIFN_DMAIER_ILLR : 0);
  959. sc->sc_dmaier &= ~HIFN_DMAIER_C_WAIT;
  960. WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
  961. if (sc->sc_flags & HIFN_IS_7956) {
  962. u_int32_t pll;
  963. WRITE_REG_0(sc, HIFN_0_PUCNFG, HIFN_PUCNFG_COMPSING |
  964. HIFN_PUCNFG_TCALLPHASES |
  965. HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32);
  966. /* turn off the clocks and insure bypass is set */
  967. pll = READ_REG_1(sc, HIFN_1_PLL);
  968. pll = (pll &~ (HIFN_PLL_PK_CLK_SEL | HIFN_PLL_PE_CLK_SEL))
  969. | HIFN_PLL_BP | HIFN_PLL_MBSET;
  970. WRITE_REG_1(sc, HIFN_1_PLL, pll);
  971. DELAY(10*1000); /* 10ms */
  972. /* change configuration */
  973. pll = (pll &~ HIFN_PLL_CONFIG) | sc->sc_pllconfig;
  974. WRITE_REG_1(sc, HIFN_1_PLL, pll);
  975. DELAY(10*1000); /* 10ms */
  976. /* disable bypass */
  977. pll &= ~HIFN_PLL_BP;
  978. WRITE_REG_1(sc, HIFN_1_PLL, pll);
  979. /* enable clocks with new configuration */
  980. pll |= HIFN_PLL_PK_CLK_SEL | HIFN_PLL_PE_CLK_SEL;
  981. WRITE_REG_1(sc, HIFN_1_PLL, pll);
  982. } else {
  983. WRITE_REG_0(sc, HIFN_0_PUCNFG, HIFN_PUCNFG_COMPSING |
  984. HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
  985. HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
  986. (sc->sc_drammodel ? HIFN_PUCNFG_DRAM : HIFN_PUCNFG_SRAM));
  987. }
  988. WRITE_REG_0(sc, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
  989. WRITE_REG_1(sc, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
  990. HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
  991. ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
  992. ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
  993. }
  994. /*
  995. * The maximum number of sessions supported by the card
  996. * is dependent on the amount of context ram, which
  997. * encryption algorithms are enabled, and how compression
  998. * is configured. This should be configured before this
  999. * routine is called.
  1000. */
  1001. static void
  1002. hifn_sessions(struct hifn_softc *sc)
  1003. {
  1004. u_int32_t pucnfg;
  1005. int ctxsize;
  1006. DPRINTF("%s()\n", __FUNCTION__);
  1007. pucnfg = READ_REG_0(sc, HIFN_0_PUCNFG);
  1008. if (pucnfg & HIFN_PUCNFG_COMPSING) {
  1009. if (pucnfg & HIFN_PUCNFG_ENCCNFG)
  1010. ctxsize = 128;
  1011. else
  1012. ctxsize = 512;
  1013. /*
  1014. * 7955/7956 has internal context memory of 32K
  1015. */
  1016. if (sc->sc_flags & HIFN_IS_7956)
  1017. sc->sc_maxses = 32768 / ctxsize;
  1018. else
  1019. sc->sc_maxses = 1 +
  1020. ((sc->sc_ramsize - 32768) / ctxsize);
  1021. } else
  1022. sc->sc_maxses = sc->sc_ramsize / 16384;
  1023. if (sc->sc_maxses > 2048)
  1024. sc->sc_maxses = 2048;
  1025. }
  1026. /*
  1027. * Determine ram type (sram or dram). Board should be just out of a reset
  1028. * state when this is called.
  1029. */
  1030. static int
  1031. hifn_ramtype(struct hifn_softc *sc)
  1032. {
  1033. u_int8_t data[8], dataexpect[8];
  1034. int i;
  1035. for (i = 0; i < sizeof(data); i++)
  1036. data[i] = dataexpect[i] = 0x55;
  1037. if (hifn_writeramaddr(sc, 0, data))
  1038. return (-1);
  1039. if (hifn_readramaddr(sc, 0, data))
  1040. return (-1);
  1041. if (bcmp(data, dataexpect, sizeof(data)) != 0) {
  1042. sc->sc_drammodel = 1;
  1043. return (0);
  1044. }
  1045. for (i = 0; i < sizeof(data); i++)
  1046. data[i] = dataexpect[i] = 0xaa;
  1047. if (hifn_writeramaddr(sc, 0, data))
  1048. return (-1);
  1049. if (hifn_readramaddr(sc, 0, data))
  1050. return (-1);
  1051. if (bcmp(data, dataexpect, sizeof(data)) != 0) {
  1052. sc->sc_drammodel = 1;
  1053. return (0);
  1054. }
  1055. return (0);
  1056. }
  1057. #define HIFN_SRAM_MAX (32 << 20)
  1058. #define HIFN_SRAM_STEP_SIZE 16384
  1059. #define HIFN_SRAM_GRANULARITY (HIFN_SRAM_MAX / HIFN_SRAM_STEP_SIZE)
  1060. static int
  1061. hifn_sramsize(struct hifn_softc *sc)
  1062. {
  1063. u_int32_t a;
  1064. u_int8_t data[8];
  1065. u_int8_t dataexpect[sizeof(data)];
  1066. int32_t i;
  1067. for (i = 0; i < sizeof(data); i++)
  1068. data[i] = dataexpect[i] = i ^ 0x5a;
  1069. for (i = HIFN_SRAM_GRANULARITY - 1; i >= 0; i--) {
  1070. a = i * HIFN_SRAM_STEP_SIZE;
  1071. bcopy(&i, data, sizeof(i));
  1072. hifn_writeramaddr(sc, a, data);
  1073. }
  1074. for (i = 0; i < HIFN_SRAM_GRANULARITY; i++) {
  1075. a = i * HIFN_SRAM_STEP_SIZE;
  1076. bcopy(&i, dataexpect, sizeof(i));
  1077. if (hifn_readramaddr(sc, a, data) < 0)
  1078. return (0);
  1079. if (bcmp(data, dataexpect, sizeof(data)) != 0)
  1080. return (0);
  1081. sc->sc_ramsize = a + HIFN_SRAM_STEP_SIZE;
  1082. }
  1083. return (0);
  1084. }
  1085. /*
  1086. * XXX For dram boards, one should really try all of the
  1087. * HIFN_PUCNFG_DSZ_*'s. This just assumes that PUCNFG
  1088. * is already set up correctly.
  1089. */
  1090. static int
  1091. hifn_dramsize(struct hifn_softc *sc)
  1092. {
  1093. u_int32_t cnfg;
  1094. if (sc->sc_flags & HIFN_IS_7956) {
  1095. /*
  1096. * 7955/7956 have a fixed internal ram of only 32K.
  1097. */
  1098. sc->sc_ramsize = 32768;
  1099. } else {
  1100. cnfg = READ_REG_0(sc, HIFN_0_PUCNFG) &
  1101. HIFN_PUCNFG_DRAMMASK;
  1102. sc->sc_ramsize = 1 << ((cnfg >> 13) + 18);
  1103. }
  1104. return (0);
  1105. }
  1106. static void
  1107. hifn_alloc_slot(struct hifn_softc *sc, int *cmdp, int *srcp, int *dstp, int *resp)
  1108. {
  1109. struct hifn_dma *dma = sc->sc_dma;
  1110. DPRINTF("%s()\n", __FUNCTION__);
  1111. if (dma->cmdi == HIFN_D_CMD_RSIZE) {
  1112. dma->cmdi = 0;
  1113. dma->cmdr[HIFN_D_CMD_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ);
  1114. wmb();
  1115. dma->cmdr[HIFN_D_CMD_RSIZE].l |= htole32(HIFN_D_VALID);
  1116. HIFN_CMDR_SYNC(sc, HIFN_D_CMD_RSIZE,
  1117. BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
  1118. }
  1119. *cmdp = dma->cmdi++;
  1120. dma->cmdk = dma->cmdi;
  1121. if (dma->srci == HIFN_D_SRC_RSIZE) {
  1122. dma->srci = 0;
  1123. dma->srcr[HIFN_D_SRC_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ);
  1124. wmb();
  1125. dma->srcr[HIFN_D_SRC_RSIZE].l |= htole32(HIFN_D_VALID);
  1126. HIFN_SRCR_SYNC(sc, HIFN_D_SRC_RSIZE,
  1127. BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
  1128. }
  1129. *srcp = dma->srci++;
  1130. dma->srck = dma->srci;
  1131. if (dma->dsti == HIFN_D_DST_RSIZE) {
  1132. dma->dsti = 0;
  1133. dma->dstr[HIFN_D_DST_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ);
  1134. wmb();
  1135. dma->dstr[HIFN_D_DST_RSIZE].l |= htole32(HIFN_D_VALID);
  1136. HIFN_DSTR_SYNC(sc, HIFN_D_DST_RSIZE,
  1137. BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
  1138. }
  1139. *dstp = dma->dsti++;
  1140. dma->dstk = dma->dsti;
  1141. if (dma->resi == HIFN_D_RES_RSIZE) {
  1142. dma->resi = 0;
  1143. dma->resr[HIFN_D_RES_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ);
  1144. wmb();
  1145. dma->resr[HIFN_D_RES_RSIZE].l |= htole32(HIFN_D_VALID);
  1146. HIFN_RESR_SYNC(sc, HIFN_D_RES_RSIZE,
  1147. BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
  1148. }
  1149. *resp = dma->resi++;
  1150. dma->resk = dma->resi;
  1151. }
  1152. static int
  1153. hifn_writeramaddr(struct hifn_softc *sc, int addr, u_int8_t *data)
  1154. {
  1155. struct hifn_dma *dma = sc->sc_dma;
  1156. hifn_base_command_t wc;
  1157. const u_int32_t masks = HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ;
  1158. int r, cmdi, resi, srci, dsti;
  1159. DPRINTF("%s()\n", __FUNCTION__);
  1160. wc.masks = htole16(3 << 13);
  1161. wc.session_num = htole16(addr >> 14);
  1162. wc.total_source_count = htole16(8);
  1163. wc.total_dest_count = htole16(addr & 0x3fff);
  1164. hifn_alloc_slot(sc, &cmdi, &srci, &dsti, &resi);
  1165. WRITE_REG_1(sc, HIFN_1_DMA_CSR,
  1166. HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
  1167. HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA);
  1168. /* build write command */
  1169. bzero(dma->command_bufs[cmdi], HIFN_MAX_COMMAND);
  1170. *(hifn_base_command_t *)dma->command_bufs[cmdi] = wc;
  1171. bcopy(data, &dma->test_src, sizeof(dma->test_src));
  1172. dma->srcr[srci].p = htole32(sc->sc_dma_physaddr
  1173. + offsetof(struct hifn_dma, test_src));
  1174. dma->dstr[dsti].p = htole32(sc->sc_dma_physaddr
  1175. + offsetof(struct hifn_dma, test_dst));
  1176. dma->cmdr[cmdi].l = htole32(16 | masks);
  1177. dma->srcr[srci].l = htole32(8 | masks);
  1178. dma->dstr[dsti].l = htole32(4 | masks);
  1179. dma->resr[resi].l = htole32(4 | masks);
  1180. for (r = 10000; r >= 0; r--) {
  1181. DELAY(10);
  1182. if ((dma->resr[resi].l & htole32(HIFN_D_VALID)) == 0)
  1183. break;
  1184. }
  1185. if (r == 0) {
  1186. device_printf(sc->sc_dev, "writeramaddr -- "
  1187. "result[%d](addr %d) still valid\n", resi, addr);
  1188. r = -1;
  1189. return (-1);
  1190. } else
  1191. r = 0;
  1192. WRITE_REG_1(sc, HIFN_1_DMA_CSR,
  1193. HIFN_DMACSR_C_CTRL_DIS | HIFN_DMACSR_S_CTRL_DIS |
  1194. HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS);
  1195. return (r);
  1196. }
  1197. static int
  1198. hifn_readramaddr(struct hifn_softc *sc, int addr, u_int8_t *data)
  1199. {
  1200. struct hifn_dma *dma = sc->sc_dma;
  1201. hifn_base_command_t rc;
  1202. const u_int32_t masks = HIFN_D_VALID | HIFN_D_LAST | HIFN_D_MASKDONEIRQ;
  1203. int r, cmdi, srci, dsti, resi;
  1204. DPRINTF("%s()\n", __FUNCTION__);
  1205. rc.masks = htole16(2 << 13);
  1206. rc.session_num = htole16(addr >> 14);
  1207. rc.total_source_count = htole16(addr & 0x3fff);
  1208. rc.total_dest_count = htole16(8);
  1209. hifn_alloc_slot(sc, &cmdi, &srci, &dsti, &resi);
  1210. WRITE_REG_1(sc, HIFN_1_DMA_CSR,
  1211. HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
  1212. HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA);
  1213. bzero(dma->command_bufs[cmdi], HIFN_MAX_COMMAND);
  1214. *(hifn_base_command_t *)dma->command_bufs[cmdi] = rc;
  1215. dma->srcr[srci].p = htole32(sc->sc_dma_physaddr +
  1216. offsetof(struct hifn_dma, test_src));
  1217. dma->test_src = 0;
  1218. dma->dstr[dsti].p = htole32(sc->sc_dma_physaddr +
  1219. offsetof(struct hifn_dma, test_dst));
  1220. dma->test_dst = 0;
  1221. dma->cmdr[cmdi].l = htole32(8 | masks);
  1222. dma->srcr[srci].l = htole32(8 | masks);
  1223. dma->dstr[dsti].l = htole32(8 | masks);
  1224. dma->resr[resi].l = htole32(HIFN_MAX_RESULT | masks);
  1225. for (r = 10000; r >= 0; r--) {
  1226. DELAY(10);
  1227. if ((dma->resr[resi].l & htole32(HIFN_D_VALID)) == 0)
  1228. break;
  1229. }
  1230. if (r == 0) {
  1231. device_printf(sc->sc_dev, "readramaddr -- "
  1232. "result[%d](addr %d) still valid\n", resi, addr);
  1233. r = -1;
  1234. } else {
  1235. r = 0;
  1236. bcopy(&dma->test_dst, data, sizeof(dma->test_dst));
  1237. }
  1238. WRITE_REG_1(sc, HIFN_1_DMA_CSR,
  1239. HIFN_DMACSR_C_CTRL_DIS | HIFN_DMACSR_S_CTRL_DIS |
  1240. HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS);
  1241. return (r);
  1242. }
  1243. /*
  1244. * Initialize the descriptor rings.
  1245. */
  1246. static void
  1247. hifn_init_dma(struct hifn_softc *sc)
  1248. {
  1249. struct hifn_dma *dma = sc->sc_dma;
  1250. int i;
  1251. DPRINTF("%s()\n", __FUNCTION__);
  1252. hifn_set_retry(sc);
  1253. /* initialize static pointer values */
  1254. for (i = 0; i < HIFN_D_CMD_RSIZE; i++)
  1255. dma->cmdr[i].p = htole32(sc->sc_dma_physaddr +
  1256. offsetof(struct hifn_dma, command_bufs[i][0]));
  1257. for (i = 0; i < HIFN_D_RES_RSIZE; i++)
  1258. dma->resr[i].p = htole32(sc->sc_dma_physaddr +
  1259. offsetof(struct hifn_dma, result_bufs[i][0]));
  1260. dma->cmdr[HIFN_D_CMD_RSIZE].p =
  1261. htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, cmdr[0]));
  1262. dma->srcr[HIFN_D_SRC_RSIZE].p =
  1263. htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, srcr[0]));
  1264. dma->dstr[HIFN_D_DST_RSIZE].p =
  1265. htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, dstr[0]));
  1266. dma->resr[HIFN_D_RES_RSIZE].p =
  1267. htole32(sc->sc_dma_physaddr + offsetof(struct hifn_dma, resr[0]));
  1268. dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
  1269. dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
  1270. dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
  1271. }
  1272. /*
  1273. * Writes out the raw command buffer space. Returns the
  1274. * command buffer size.
  1275. */
  1276. static u_int
  1277. hifn_write_command(struct hifn_command *cmd, u_int8_t *buf)
  1278. {
  1279. struct hifn_softc *sc = NULL;
  1280. u_int8_t *buf_pos;
  1281. hifn_base_command_t *base_cmd;
  1282. hifn_mac_command_t *mac_cmd;
  1283. hifn_crypt_command_t *cry_cmd;
  1284. int using_mac, using_crypt, len, ivlen;
  1285. u_int32_t dlen, slen;
  1286. DPRINTF("%s()\n", __FUNCTION__);
  1287. buf_pos = buf;
  1288. using_mac = cmd->base_masks & HIFN_BASE_CMD_MAC;
  1289. using_crypt = cmd->base_masks & HIFN_BASE_CMD_CRYPT;
  1290. base_cmd = (hifn_base_command_t *)buf_pos;
  1291. base_cmd->masks = htole16(cmd->base_masks);
  1292. slen = cmd->src_mapsize;
  1293. if (cmd->sloplen)
  1294. dlen = cmd->dst_mapsize - cmd->sloplen + sizeof(u_int32_t);
  1295. else
  1296. dlen = cmd->dst_mapsize;
  1297. base_cmd->total_source_count = htole16(slen & HIFN_BASE_CMD_LENMASK_LO);
  1298. base_cmd->total_dest_count = htole16(dlen & HIFN_BASE_CMD_LENMASK_LO);
  1299. dlen >>= 16;
  1300. slen >>= 16;
  1301. base_cmd->session_num = htole16(
  1302. ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
  1303. ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
  1304. buf_pos += sizeof(hifn_base_command_t);
  1305. if (using_mac) {
  1306. mac_cmd = (hifn_mac_command_t *)buf_pos;
  1307. dlen = cmd->maccrd->crd_len;
  1308. mac_cmd->source_count = htole16(dlen & 0xffff);
  1309. dlen >>= 16;
  1310. mac_cmd->masks = htole16(cmd->mac_masks |
  1311. ((dlen << HIFN_MAC_CMD_SRCLEN_S) & HIFN_MAC_CMD_SRCLEN_M));
  1312. mac_cmd->header_skip = htole16(cmd->maccrd->crd_skip);
  1313. mac_cmd->reserved = 0;
  1314. buf_pos += sizeof(hifn_mac_command_t);
  1315. }
  1316. if (using_crypt) {
  1317. cry_cmd = (hifn_crypt_command_t *)buf_pos;
  1318. dlen = cmd->enccrd->crd_len;
  1319. cry_cmd->source_count = htole16(dlen & 0xffff);
  1320. dlen >>= 16;
  1321. cry_cmd->masks = htole16(cmd->cry_masks |
  1322. ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) & HIFN_CRYPT_CMD_SRCLEN_M));
  1323. cry_cmd->header_skip = htole16(cmd->enccrd->crd_skip);
  1324. cry_cmd->reserved = 0;
  1325. buf_pos += sizeof(hifn_crypt_command_t);
  1326. }
  1327. if (using_mac && cmd->mac_masks & HIFN_MAC_CMD_NEW_KEY) {
  1328. bcopy(cmd->mac, buf_pos, HIFN_MAC_KEY_LENGTH);
  1329. buf_pos += HIFN_MAC_KEY_LENGTH;
  1330. }
  1331. if (using_crypt && cmd->cry_masks & HIFN_CRYPT_CMD_NEW_KEY) {
  1332. switch (cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) {
  1333. case HIFN_CRYPT_CMD_ALG_3DES:
  1334. bcopy(cmd->ck, buf_pos, HIFN_3DES_KEY_LENGTH);
  1335. buf_pos += HIFN_3DES_KEY_LENGTH;
  1336. break;
  1337. case HIFN_CRYPT_CMD_ALG_DES:
  1338. bcopy(cmd->ck, buf_pos, HIFN_DES_KEY_LENGTH);
  1339. buf_pos += HIFN_DES_KEY_LENGTH;
  1340. break;
  1341. case HIFN_CRYPT_CMD_ALG_RC4:
  1342. len = 256;
  1343. do {
  1344. int clen;
  1345. clen = MIN(cmd->cklen, len);
  1346. bcopy(cmd->ck, buf_pos, clen);
  1347. len -= clen;
  1348. buf_pos += clen;
  1349. } while (len > 0);
  1350. bzero(buf_pos, 4);
  1351. buf_pos += 4;
  1352. break;
  1353. case HIFN_CRYPT_CMD_ALG_AES:
  1354. /*
  1355. * AES keys are variable 128, 192 and
  1356. * 256 bits (16, 24 and 32 bytes).
  1357. */
  1358. bcopy(cmd->ck, buf_pos, cmd->cklen);
  1359. buf_pos += cmd->cklen;
  1360. break;
  1361. }
  1362. }
  1363. if (using_crypt && cmd->cry_masks & HIFN_CRYPT_CMD_NEW_IV) {
  1364. switch (cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) {
  1365. case HIFN_CRYPT_CMD_ALG_AES:
  1366. ivlen = HIFN_AES_IV_LENGTH;
  1367. break;
  1368. default:
  1369. ivlen = HIFN_IV_LENGTH;
  1370. break;
  1371. }
  1372. bcopy(cmd->iv, buf_pos, ivlen);
  1373. buf_pos += ivlen;
  1374. }
  1375. if ((cmd->base_masks & (HIFN_BASE_CMD_MAC|HIFN_BASE_CMD_CRYPT)) == 0) {
  1376. bzero(buf_pos, 8);
  1377. buf_pos += 8;
  1378. }
  1379. return (buf_pos - buf);
  1380. }
  1381. static int
  1382. hifn_dmamap_aligned(struct hifn_operand *op)
  1383. {
  1384. struct hifn_softc *sc = NULL;
  1385. int i;
  1386. DPRINTF("%s()\n", __FUNCTION__);
  1387. for (i = 0; i < op->nsegs; i++) {
  1388. if (op->segs[i].ds_addr & 3)
  1389. return (0);
  1390. if ((i != (op->nsegs - 1)) && (op->segs[i].ds_len & 3))
  1391. return (0);
  1392. }
  1393. return (1);
  1394. }
  1395. static __inline int
  1396. hifn_dmamap_dstwrap(struct hifn_softc *sc, int idx)
  1397. {
  1398. struct hifn_dma *dma = sc->sc_dma;
  1399. if (++idx == HIFN_D_DST_RSIZE) {
  1400. dma->dstr[idx].l = htole32(HIFN_D_VALID | HIFN_D_JUMP |
  1401. HIFN_D_MASKDONEIRQ);
  1402. HIFN_DSTR_SYNC(sc, idx,
  1403. BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  1404. idx = 0;
  1405. }
  1406. return (idx);
  1407. }
  1408. static int
  1409. hifn_dmamap_load_dst(struct hifn_softc *sc, struct hifn_command *cmd)
  1410. {
  1411. struct hifn_dma *dma = sc->sc_dma;
  1412. struct hifn_operand *dst = &cmd->dst;
  1413. u_int32_t p, l;
  1414. int idx, used = 0, i;
  1415. DPRINTF("%s()\n", __FUNCTION__);
  1416. idx = dma->dsti;
  1417. for (i = 0; i < dst->nsegs - 1; i++) {
  1418. dma->dstr[idx].p = htole32(dst->segs[i].ds_addr);
  1419. dma->dstr[idx].l = htole32(HIFN_D_MASKDONEIRQ | dst->segs[i].ds_len);
  1420. wmb();
  1421. dma->dstr[idx].l |= htole32(HIFN_D_VALID);
  1422. HIFN_DSTR_SYNC(sc, idx,
  1423. BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  1424. used++;
  1425. idx = hifn_dmamap_dstwrap(sc, idx);
  1426. }
  1427. if (cmd->sloplen == 0) {
  1428. p = dst->segs[i].ds_addr;
  1429. l = HIFN_D_MASKDONEIRQ | HIFN_D_LAST |
  1430. dst->segs[i].ds_len;
  1431. } else {
  1432. p = sc->sc_dma_physaddr +
  1433. offsetof(struct hifn_dma, slop[cmd->slopidx]);
  1434. l = HIFN_D_MASKDONEIRQ | HIFN_D_LAST |
  1435. sizeof(u_int32_t);
  1436. if ((dst->segs[i].ds_len - cmd->sloplen) != 0) {
  1437. dma->dstr[idx].p = htole32(dst->segs[i].ds_addr);
  1438. dma->dstr[idx].l = htole32(HIFN_D_MASKDONEIRQ |
  1439. (dst->segs[i].ds_len - cmd->sloplen));
  1440. wmb();
  1441. dma->dstr[idx].l |= htole32(HIFN_D_VALID);
  1442. HIFN_DSTR_SYNC(sc, idx,
  1443. BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  1444. used++;
  1445. idx = hifn_dmamap_dstwrap(sc, idx);
  1446. }
  1447. }
  1448. dma->dstr[idx].p = htole32(p);
  1449. dma->dstr[idx].l = htole32(l);
  1450. wmb();
  1451. dma->dstr[idx].l |= htole32(HIFN_D_VALID);
  1452. HIFN_DSTR_SYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  1453. used++;
  1454. idx = hifn_dmamap_dstwrap(sc, idx);
  1455. dma->dsti = idx;
  1456. dma->dstu += used;
  1457. return (idx);
  1458. }
  1459. static __inline int
  1460. hifn_dmamap_srcwrap(struct hifn_softc *sc, int idx)
  1461. {
  1462. struct hifn_dma *dma = sc->sc_dma;
  1463. if (++idx == HIFN_D_SRC_RSIZE) {
  1464. dma->srcr[idx].l = htole32(HIFN_D_VALID |
  1465. HIFN_D_JUMP | HIFN_D_MASKDONEIRQ);
  1466. HIFN_SRCR_SYNC(sc, HIFN_D_SRC_RSIZE,
  1467. BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
  1468. idx = 0;
  1469. }
  1470. return (idx);
  1471. }
  1472. static int
  1473. hifn_dmamap_load_src(struct hifn_softc *sc, struct hifn_command *cmd)
  1474. {
  1475. struct hifn_dma *dma = sc->sc_dma;
  1476. struct hifn_operand *src = &cmd->src;
  1477. int idx, i;
  1478. u_int32_t last = 0;
  1479. DPRINTF("%s()\n", __FUNCTION__);
  1480. idx = dma->srci;
  1481. for (i = 0; i < src->nsegs; i++) {
  1482. if (i == src->nsegs - 1)
  1483. last = HIFN_D_LAST;
  1484. dma->srcr[idx].p = htole32(src->segs[i].ds_addr);
  1485. dma->srcr[idx].l = htole32(src->segs[i].ds_len |
  1486. HIFN_D_MASKDONEIRQ | last);
  1487. wmb();
  1488. dma->srcr[idx].l |= htole32(HIFN_D_VALID);
  1489. HIFN_SRCR_SYNC(sc, idx,
  1490. BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
  1491. idx = hifn_dmamap_srcwrap(sc, idx);
  1492. }
  1493. dma->srci = idx;
  1494. dma->srcu += src->nsegs;
  1495. return (idx);
  1496. }
  1497. static int
  1498. hifn_crypto(
  1499. struct hifn_softc *sc,
  1500. struct hifn_command *cmd,
  1501. struct cryptop *crp,
  1502. int hint)
  1503. {
  1504. struct hifn_dma *dma = sc->sc_dma;
  1505. u_int32_t cmdlen, csr;
  1506. int cmdi, resi, err = 0;
  1507. unsigned long l_flags;
  1508. DPRINTF("%s()\n", __FUNCTION__);
  1509. /*
  1510. * need 1 cmd, and 1 res
  1511. *
  1512. * NB: check this first since it's easy.
  1513. */
  1514. HIFN_LOCK(sc);
  1515. if ((dma->cmdu + 1) > HIFN_D_CMD_RSIZE ||
  1516. (dma->resu + 1) > HIFN_D_RES_RSIZE) {
  1517. #ifdef HIFN_DEBUG
  1518. if (hifn_debug) {
  1519. device_printf(sc->sc_dev,
  1520. "cmd/result exhaustion, cmdu %u resu %u\n",
  1521. dma->cmdu, dma->resu);
  1522. }
  1523. #endif
  1524. hifnstats.hst_nomem_cr++;
  1525. sc->sc_needwakeup |= CRYPTO_SYMQ;
  1526. HIFN_UNLOCK(sc);
  1527. return (ERESTART);
  1528. }
  1529. if (crp->crp_flags & CRYPTO_F_SKBUF) {
  1530. if (pci_map_skb(sc, &cmd->src, cmd->src_skb)) {
  1531. hifnstats.hst_nomem_load++;
  1532. err = ENOMEM;
  1533. goto err_srcmap1;
  1534. }
  1535. } else if (crp->crp_flags & CRYPTO_F_IOV) {
  1536. if (pci_map_uio(sc, &cmd->src, cmd->src_io)) {
  1537. hifnstats.hst_nomem_load++;
  1538. err = ENOMEM;
  1539. goto err_srcmap1;
  1540. }
  1541. } else {
  1542. if (pci_map_buf(sc, &cmd->src, cmd->src_buf, crp->crp_ilen)) {
  1543. hifnstats.hst_nomem_load++;
  1544. err = ENOMEM;
  1545. goto err_srcmap1;
  1546. }
  1547. }
  1548. if (hifn_dmamap_aligned(&cmd->src)) {
  1549. cmd->sloplen = cmd->src_mapsize & 3;
  1550. cmd->dst = cmd->src;
  1551. } else {
  1552. if (crp->crp_flags & CRYPTO_F_IOV) {
  1553. DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
  1554. err = EINVAL;
  1555. goto err_srcmap;
  1556. } else if (crp->crp_flags & CRYPTO_F_SKBUF) {
  1557. #ifdef NOTYET
  1558. int totlen, len;
  1559. struct mbuf *m, *m0, *mlast;
  1560. KASSERT(cmd->dst_m == cmd->src_m,
  1561. ("hifn_crypto: dst_m initialized improperly"));
  1562. hifnstats.hst_unaligned++;
  1563. /*
  1564. * Source is not aligned on a longword boundary.
  1565. * Copy the data to insure alignment. If we fail
  1566. * to allocate mbufs or clusters while doing this
  1567. * we return ERESTART so the operation is requeued
  1568. * at the crypto later, but only if there are
  1569. * ops already posted to the hardware; otherwise we
  1570. * have no guarantee that we'll be re-entered.
  1571. */
  1572. totlen = cmd->src_mapsize;
  1573. if (cmd->src_m->m_flags & M_PKTHDR) {
  1574. len = MHLEN;
  1575. MGETHDR(m0, M_DONTWAIT, MT_DATA);
  1576. if (m0 && !m_dup_pkthdr(m0, cmd->src_m, M_DONTWAIT)) {
  1577. m_free(m0);
  1578. m0 = NULL;
  1579. }
  1580. } else {
  1581. len = MLEN;
  1582. MGET(m0, M_DONTWAIT, MT_DATA);
  1583. }
  1584. if (m0 == NULL) {
  1585. hifnstats.hst_nomem_mbuf++;
  1586. err = dma->cmdu ? ERESTART : ENOMEM;
  1587. goto err_srcmap;
  1588. }
  1589. if (totlen >= MINCLSIZE) {
  1590. MCLGET(m0, M_DONTWAIT);
  1591. if ((m0->m_flags & M_EXT) == 0) {
  1592. hifnstats.hst_nomem_mcl++;
  1593. err = dma->cmdu ? ERESTART : ENOMEM;
  1594. m_freem(m0);
  1595. goto err_srcmap;
  1596. }
  1597. len = MCLBYTES;
  1598. }
  1599. totlen -= len;
  1600. m0->m_pkthdr.len = m0->m_len = len;
  1601. mlast = m0;
  1602. while (totlen > 0) {
  1603. MGET(m, M_DONTWAIT, MT_DATA);
  1604. if (m == NULL) {
  1605. hifnstats.hst_nomem_mbuf++;
  1606. err = dma->cmdu ? ERESTART : ENOMEM;
  1607. m_freem(m0);
  1608. goto err_srcmap;
  1609. }
  1610. len = MLEN;
  1611. if (totlen >= MINCLSIZE) {
  1612. MCLGET(m, M_DONTWAIT);
  1613. if ((m->m_flags & M_EXT) == 0) {
  1614. hifnstats.hst_nomem_mcl++;
  1615. err = dma->cmdu ? ERESTART : ENOMEM;
  1616. mlast->m_next = m;
  1617. m_freem(m0);
  1618. goto err_srcmap;
  1619. }
  1620. len = MCLBYTES;
  1621. }
  1622. m->m_len = len;
  1623. m0->m_pkthdr.len += len;
  1624. totlen -= len;
  1625. mlast->m_next = m;
  1626. mlast = m;
  1627. }
  1628. cmd->dst_m = m0;
  1629. #else
  1630. device_printf(sc->sc_dev,
  1631. "%s,%d: CRYPTO_F_SKBUF unaligned not implemented\n",
  1632. __FILE__, __LINE__);
  1633. err = EINVAL;
  1634. goto err_srcmap;
  1635. #endif
  1636. } else {
  1637. device_printf(sc->sc_dev,
  1638. "%s,%d: unaligned contig buffers not implemented\n",
  1639. __FILE__, __LINE__);
  1640. err = EINVAL;
  1641. goto err_srcmap;
  1642. }
  1643. }
  1644. if (cmd->dst_map == NULL) {
  1645. if (crp->crp_flags & CRYPTO_F_SKBUF) {
  1646. if (pci_map_skb(sc, &cmd->dst, cmd->dst_skb)) {
  1647. hifnstats.hst_nomem_map++;
  1648. err = ENOMEM;
  1649. goto err_dstmap1;
  1650. }
  1651. } else if (crp->crp_flags & CRYPTO_F_IOV) {
  1652. if (pci_map_uio(sc, &cmd->dst, cmd->dst_io)) {
  1653. hifnstats.hst_nomem_load++;
  1654. err = ENOMEM;
  1655. goto err_dstmap1;
  1656. }
  1657. } else {
  1658. if (pci_map_buf(sc, &cmd->dst, cmd->dst_buf, crp->crp_ilen)) {
  1659. hifnstats.hst_nomem_load++;
  1660. err = ENOMEM;
  1661. goto err_dstmap1;
  1662. }
  1663. }
  1664. }
  1665. #ifdef HIFN_DEBUG
  1666. if (hifn_debug) {
  1667. device_printf(sc->sc_dev,
  1668. "Entering cmd: stat %8x ien %8x u %d/%d/%d/%d n %d/%d\n",
  1669. READ_REG_1(sc, HIFN_1_DMA_CSR),
  1670. READ_REG_1(sc, HIFN_1_DMA_IER),
  1671. dma->cmdu, dma->srcu, dma->dstu, dma->resu,
  1672. cmd->src_nsegs, cmd->dst_nsegs);
  1673. }
  1674. #endif
  1675. #if 0
  1676. if (cmd->src_map == cmd->dst_map) {
  1677. bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
  1678. BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
  1679. } else {
  1680. bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
  1681. BUS_DMASYNC_PREWRITE);
  1682. bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
  1683. BUS_DMASYNC_PREREAD);
  1684. }
  1685. #endif
  1686. /*
  1687. * need N src, and N dst
  1688. */
  1689. if ((dma->srcu + cmd->src_nsegs) > HIFN_D_SRC_RSIZE ||
  1690. (dma->dstu + cmd->dst_nsegs + 1) > HIFN_D_DST_RSIZE) {
  1691. #ifdef HIFN_DEBUG
  1692. if (hifn_debug) {
  1693. device_printf(sc->sc_dev,
  1694. "src/dst exhaustion, srcu %u+%u dstu %u+%u\n",
  1695. dma->srcu, cmd->src_nsegs,
  1696. dma->dstu, cmd->dst_nsegs);
  1697. }
  1698. #endif
  1699. hifnstats.hst_nomem_sd++;
  1700. err = ERESTART;
  1701. goto err_dstmap;
  1702. }
  1703. if (dma->cmdi == HIFN_D_CMD_RSIZE) {
  1704. dma->cmdi = 0;
  1705. dma->cmdr[HIFN_D_CMD_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ);
  1706. wmb();
  1707. dma->cmdr[HIFN_D_CMD_RSIZE].l |= htole32(HIFN_D_VALID);
  1708. HIFN_CMDR_SYNC(sc, HIFN_D_CMD_RSIZE,
  1709. BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
  1710. }
  1711. cmdi = dma->cmdi++;
  1712. cmdlen = hifn_write_command(cmd, dma->command_bufs[cmdi]);
  1713. HIFN_CMD_SYNC(sc, cmdi, BUS_DMASYNC_PREWRITE);
  1714. /* .p for command/result already set */
  1715. dma->cmdr[cmdi].l = htole32(cmdlen | HIFN_D_LAST |
  1716. HIFN_D_MASKDONEIRQ);
  1717. wmb();
  1718. dma->cmdr[cmdi].l |= htole32(HIFN_D_VALID);
  1719. HIFN_CMDR_SYNC(sc, cmdi,
  1720. BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
  1721. dma->cmdu++;
  1722. /*
  1723. * We don't worry about missing an interrupt (which a "command wait"
  1724. * interrupt salvages us from), unless there is more than one command
  1725. * in the queue.
  1726. */
  1727. if (dma->cmdu > 1) {
  1728. sc->sc_dmaier |= HIFN_DMAIER_C_WAIT;
  1729. WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
  1730. }
  1731. hifnstats.hst_ipackets++;
  1732. hifnstats.hst_ibytes += cmd->src_mapsize;
  1733. hifn_dmamap_load_src(sc, cmd);
  1734. /*
  1735. * Unlike other descriptors, we don't mask done interrupt from
  1736. * result descriptor.
  1737. */
  1738. #ifdef HIFN_DEBUG
  1739. if (hifn_debug)
  1740. device_printf(sc->sc_dev, "load res\n");
  1741. #endif
  1742. if (dma->resi == HIFN_D_RES_RSIZE) {
  1743. dma->resi = 0;
  1744. dma->resr[HIFN_D_RES_RSIZE].l = htole32(HIFN_D_JUMP|HIFN_D_MASKDONEIRQ);
  1745. wmb();
  1746. dma->resr[HIFN_D_RES_RSIZE].l |= htole32(HIFN_D_VALID);
  1747. HIFN_RESR_SYNC(sc, HIFN_D_RES_RSIZE,
  1748. BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  1749. }
  1750. resi = dma->resi++;
  1751. KASSERT(dma->hifn_commands[resi] == NULL,
  1752. ("hifn_crypto: command slot %u busy", resi));
  1753. dma->hifn_commands[resi] = cmd;
  1754. HIFN_RES_SYNC(sc, resi, BUS_DMASYNC_PREREAD);
  1755. if ((hint & CRYPTO_HINT_MORE) && sc->sc_curbatch < hifn_maxbatch) {
  1756. dma->resr[resi].l = htole32(HIFN_MAX_RESULT |
  1757. HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
  1758. wmb();
  1759. dma->resr[resi].l |= htole32(HIFN_D_VALID);
  1760. sc->sc_curbatch++;
  1761. if (sc->sc_curbatch > hifnstats.hst_maxbatch)
  1762. hifnstats.hst_maxbatch = sc->sc_curbatch;
  1763. hifnstats.hst_totbatch++;
  1764. } else {
  1765. dma->resr[resi].l = htole32(HIFN_MAX_RESULT | HIFN_D_LAST);
  1766. wmb();
  1767. dma->resr[resi].l |= htole32(HIFN_D_VALID);
  1768. sc->sc_curbatch = 0;
  1769. }
  1770. HIFN_RESR_SYNC(sc, resi,
  1771. BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  1772. dma->resu++;
  1773. if (cmd->sloplen)
  1774. cmd->slopidx = resi;
  1775. hifn_dmamap_load_dst(sc, cmd);
  1776. csr = 0;
  1777. if (sc->sc_c_busy == 0) {
  1778. csr |= HIFN_DMACSR_C_CTRL_ENA;
  1779. sc->sc_c_busy = 1;
  1780. }
  1781. if (sc->sc_s_busy == 0) {
  1782. csr |= HIFN_DMACSR_S_CTRL_ENA;
  1783. sc->sc_s_busy = 1;
  1784. }
  1785. if (sc->sc_r_busy == 0) {
  1786. csr |= HIFN_DMACSR_R_CTRL_ENA;
  1787. sc->sc_r_busy = 1;
  1788. }
  1789. if (sc->sc_d_busy == 0) {
  1790. csr |= HIFN_DMACSR_D_CTRL_ENA;
  1791. sc->sc_d_busy = 1;
  1792. }
  1793. if (csr)
  1794. WRITE_REG_1(sc, HIFN_1_DMA_CSR, csr);
  1795. #ifdef HIFN_DEBUG
  1796. if (hifn_debug) {
  1797. device_printf(sc->sc_dev, "command: stat %8x ier %8x\n",
  1798. READ_REG_1(sc, HIFN_1_DMA_CSR),
  1799. READ_REG_1(sc, HIFN_1_DMA_IER));
  1800. }
  1801. #endif
  1802. sc->sc_active = 5;
  1803. HIFN_UNLOCK(sc);
  1804. KASSERT(err == 0, ("hifn_crypto: success with error %u", err));
  1805. return (err); /* success */
  1806. err_dstmap:
  1807. if (cmd->src_map != cmd->dst_map)
  1808. pci_unmap_buf(sc, &cmd->dst);
  1809. err_dstmap1:
  1810. err_srcmap:
  1811. if (crp->crp_flags & CRYPTO_F_SKBUF) {
  1812. if (cmd->src_skb != cmd->dst_skb)
  1813. #ifdef NOTYET
  1814. m_freem(cmd->dst_m);
  1815. #else
  1816. device_printf(sc->sc_dev,
  1817. "%s,%d: CRYPTO_F_SKBUF src != dst not implemented\n",
  1818. __FILE__, __LINE__);
  1819. #endif
  1820. }
  1821. pci_unmap_buf(sc, &cmd->src);
  1822. err_srcmap1:
  1823. HIFN_UNLOCK(sc);
  1824. return (err);
  1825. }
  1826. static void
  1827. hifn_tick(unsigned long arg)
  1828. {
  1829. struct hifn_softc *sc;
  1830. unsigned long l_flags;
  1831. if (arg >= HIFN_MAX_CHIPS)
  1832. return;
  1833. sc = hifn_chip_idx[arg];
  1834. if (!sc)
  1835. return;
  1836. HIFN_LOCK(sc);
  1837. if (sc->sc_active == 0) {
  1838. struct hifn_dma *dma = sc->sc_dma;
  1839. u_int32_t r = 0;
  1840. if (dma->cmdu == 0 && sc->sc_c_busy) {
  1841. sc->sc_c_busy = 0;
  1842. r |= HIFN_DMACSR_C_CTRL_DIS;
  1843. }
  1844. if (dma->srcu == 0 && sc->sc_s_busy) {
  1845. sc->sc_s_busy = 0;
  1846. r |= HIFN_DMACSR_S_CTRL_DIS;
  1847. }
  1848. if (dma->dstu == 0 && sc->sc_d_busy) {
  1849. sc->sc_d_busy = 0;
  1850. r |= HIFN_DMACSR_D_CTRL_DIS;
  1851. }
  1852. if (dma->resu == 0 && sc->sc_r_busy) {
  1853. sc->sc_r_busy = 0;
  1854. r |= HIFN_DMACSR_R_CTRL_DIS;
  1855. }
  1856. if (r)
  1857. WRITE_REG_1(sc, HIFN_1_DMA_CSR, r);
  1858. } else
  1859. sc->sc_active--;
  1860. HIFN_UNLOCK(sc);
  1861. mod_timer(&sc->sc_tickto, jiffies + HZ);
  1862. }
  1863. static irqreturn_t
  1864. #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)
  1865. hifn_intr(int irq, void *arg)
  1866. #else
  1867. hifn_intr(int irq, void *arg, struct pt_regs *regs)
  1868. #endif
  1869. {
  1870. struct hifn_softc *sc = arg;
  1871. struct hifn_dma *dma;
  1872. u_int32_t dmacsr, restart;
  1873. int i, u;
  1874. unsigned long l_flags;
  1875. dmacsr = READ_REG_1(sc, HIFN_1_DMA_CSR);
  1876. /* Nothing in the DMA unit interrupted */
  1877. if ((dmacsr & sc->sc_dmaier) == 0)
  1878. return IRQ_NONE;
  1879. HIFN_LOCK(sc);
  1880. dma = sc->sc_dma;
  1881. #ifdef HIFN_DEBUG
  1882. if (hifn_debug) {
  1883. device_printf(sc->sc_dev,
  1884. "irq: stat %08x ien %08x damier %08x i %d/%d/%d/%d k %d/%d/%d/%d u %d/%d/%d/%d\n",
  1885. dmacsr, READ_REG_1(sc, HIFN_1_DMA_IER), sc->sc_dmaier,
  1886. dma->cmdi, dma->srci, dma->dsti, dma->resi,
  1887. dma->cmdk, dma->srck, dma->dstk, dma->resk,
  1888. dma->cmdu, dma->srcu, dma->dstu, dma->resu);
  1889. }
  1890. #endif
  1891. WRITE_REG_1(sc, HIFN_1_DMA_CSR, dmacsr & sc->sc_dmaier);
  1892. if ((sc->sc_flags & HIFN_HAS_PUBLIC) &&
  1893. (dmacsr & HIFN_DMACSR_PUBDONE))
  1894. WRITE_REG_1(sc, HIFN_1_PUB_STATUS,
  1895. READ_REG_1(sc, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
  1896. restart = dmacsr & (HIFN_DMACSR_D_OVER | HIFN_DMACSR_R_OVER);
  1897. if (restart)
  1898. device_printf(sc->sc_dev, "overrun %x\n", dmacsr);
  1899. if (sc->sc_flags & HIFN_IS_7811) {
  1900. if (dmacsr & HIFN_DMACSR_ILLR)
  1901. device_printf(sc->sc_dev, "illegal read\n");
  1902. if (dmacsr & HIFN_DMACSR_ILLW)
  1903. device_printf(sc->sc_dev, "illegal write\n");
  1904. }
  1905. restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
  1906. HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
  1907. if (restart) {
  1908. device_printf(sc->sc_dev, "abort, resetting.\n");
  1909. hifnstats.hst_abort++;
  1910. hifn_abort(sc);
  1911. HIFN_UNLOCK(sc);
  1912. return IRQ_HANDLED;
  1913. }
  1914. if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
  1915. /*
  1916. * If no slots to process and we receive a "waiting on
  1917. * command" interrupt, we disable the "waiting on command"
  1918. * (by clearing it).
  1919. */
  1920. sc->sc_dmaier &= ~HIFN_DMAIER_C_WAIT;
  1921. WRITE_REG_1(sc, HIFN_1_DMA_IER, sc->sc_dmaier);
  1922. }
  1923. /* clear the rings */
  1924. i = dma->resk; u = dma->resu;
  1925. while (u != 0) {
  1926. HIFN_RESR_SYNC(sc, i,
  1927. BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  1928. if (dma->resr[i].l & htole32(HIFN_D_VALID)) {
  1929. HIFN_RESR_SYNC(sc, i,
  1930. BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  1931. break;
  1932. }
  1933. if (i != HIFN_D_RES_RSIZE) {
  1934. struct hifn_command *cmd;
  1935. u_int8_t *macbuf = NULL;
  1936. HIFN_RES_SYNC(sc, i, BUS_DMASYNC_POSTREAD);
  1937. cmd = dma->hifn_commands[i];
  1938. KASSERT(cmd != NULL,
  1939. ("hifn_intr: null command slot %u", i));
  1940. dma->hifn_commands[i] = NULL;
  1941. if (cmd->base_masks & HIFN_BASE_CMD_MAC) {
  1942. macbuf = dma->result_bufs[i];
  1943. macbuf += 12;
  1944. }
  1945. hifn_callback(sc, cmd, macbuf);
  1946. hifnstats.hst_opackets++;
  1947. u--;
  1948. }
  1949. if (++i == (HIFN_D_RES_RSIZE + 1))
  1950. i = 0;
  1951. }
  1952. dma->resk = i; dma->resu = u;
  1953. i = dma->srck; u = dma->srcu;
  1954. while (u != 0) {
  1955. if (i == HIFN_D_SRC_RSIZE)
  1956. i = 0;
  1957. HIFN_SRCR_SYNC(sc, i,
  1958. BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  1959. if (dma->srcr[i].l & htole32(HIFN_D_VALID)) {
  1960. HIFN_SRCR_SYNC(sc, i,
  1961. BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  1962. break;
  1963. }
  1964. i++, u--;
  1965. }
  1966. dma->srck = i; dma->srcu = u;
  1967. i = dma->cmdk; u = dma->cmdu;
  1968. while (u != 0) {
  1969. HIFN_CMDR_SYNC(sc, i,
  1970. BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  1971. if (dma->cmdr[i].l & htole32(HIFN_D_VALID)) {
  1972. HIFN_CMDR_SYNC(sc, i,
  1973. BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  1974. break;
  1975. }
  1976. if (i != HIFN_D_CMD_RSIZE) {
  1977. u--;
  1978. HIFN_CMD_SYNC(sc, i, BUS_DMASYNC_POSTWRITE);
  1979. }
  1980. if (++i == (HIFN_D_CMD_RSIZE + 1))
  1981. i = 0;
  1982. }
  1983. dma->cmdk = i; dma->cmdu = u;
  1984. HIFN_UNLOCK(sc);
  1985. if (sc->sc_needwakeup) { /* XXX check high watermark */
  1986. int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
  1987. #ifdef HIFN_DEBUG
  1988. if (hifn_debug)
  1989. device_printf(sc->sc_dev,
  1990. "wakeup crypto (%x) u %d/%d/%d/%d\n",
  1991. sc->sc_needwakeup,
  1992. dma->cmdu, dma->srcu, dma->dstu, dma->resu);
  1993. #endif
  1994. sc->sc_needwakeup &= ~wakeup;
  1995. crypto_unblock(sc->sc_cid, wakeup);
  1996. }
  1997. return IRQ_HANDLED;
  1998. }
  1999. /*
  2000. * Allocate a new 'session' and return an encoded session id. 'sidp'
  2001. * contains our registration id, and should contain an encoded session
  2002. * id on successful allocation.
  2003. */
  2004. static int
  2005. hifn_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
  2006. {
  2007. struct hifn_softc *sc = device_get_softc(dev);
  2008. struct cryptoini *c;
  2009. int mac = 0, cry = 0, sesn;
  2010. struct hifn_session *ses = NULL;
  2011. unsigned long l_flags;
  2012. DPRINTF("%s()\n", __FUNCTION__);
  2013. KASSERT(sc != NULL, ("hifn_newsession: null softc"));
  2014. if (sidp == NULL || cri == NULL || sc == NULL) {
  2015. DPRINTF("%s,%d: %s - EINVAL\n", __FILE__, __LINE__, __FUNCTION__);
  2016. return (EINVAL);
  2017. }
  2018. HIFN_LOCK(sc);
  2019. if (sc->sc_sessions == NULL) {
  2020. ses = sc->sc_sessions = (struct hifn_session *)kmalloc(sizeof(*ses),
  2021. SLAB_ATOMIC);
  2022. if (ses == NULL) {
  2023. HIFN_UNLOCK(sc);
  2024. return (ENOMEM);
  2025. }
  2026. sesn = 0;
  2027. sc->sc_nsessions = 1;
  2028. } else {
  2029. for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
  2030. if (!sc->sc_sessions[sesn].hs_used) {
  2031. ses = &sc->sc_sessions[sesn];
  2032. break;
  2033. }
  2034. }
  2035. if (ses == NULL) {
  2036. sesn = sc->sc_nsessions;
  2037. ses = (struct hifn_session *)kmalloc((sesn + 1) * sizeof(*ses),
  2038. SLAB_ATOMIC);
  2039. if (ses == NULL) {
  2040. HIFN_UNLOCK(sc);
  2041. return (ENOMEM);
  2042. }
  2043. bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses));
  2044. bzero(sc->sc_sessions, sesn * sizeof(*ses));
  2045. kfree(sc->sc_sessions);
  2046. sc->sc_sessions = ses;
  2047. ses = &sc->sc_sessions[sesn];
  2048. sc->sc_nsessions++;
  2049. }
  2050. }
  2051. HIFN_UNLOCK(sc);
  2052. bzero(ses, sizeof(*ses));
  2053. ses->hs_used = 1;
  2054. for (c = cri; c != NULL; c = c->cri_next) {
  2055. switch (c->cri_alg) {
  2056. case CRYPTO_MD5:
  2057. case CRYPTO_SHA1:
  2058. case CRYPTO_MD5_HMAC:
  2059. case CRYPTO_SHA1_HMAC:
  2060. if (mac) {
  2061. DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
  2062. return (EINVAL);
  2063. }
  2064. mac = 1;
  2065. ses->hs_mlen = c->cri_mlen;
  2066. if (ses->hs_mlen == 0) {
  2067. switch (c->cri_alg) {
  2068. case CRYPTO_MD5:
  2069. case CRYPTO_MD5_HMAC:
  2070. ses->hs_mlen = 16;
  2071. break;
  2072. case CRYPTO_SHA1:
  2073. case CRYPTO_SHA1_HMAC:
  2074. ses->hs_mlen = 20;
  2075. break;
  2076. }
  2077. }
  2078. break;
  2079. case CRYPTO_DES_CBC:
  2080. case CRYPTO_3DES_CBC:
  2081. case CRYPTO_AES_CBC:
  2082. /* XXX this may read fewer, does it matter? */
  2083. read_random(ses->hs_iv,
  2084. c->cri_alg == CRYPTO_AES_CBC ?
  2085. HIFN_AES_IV_LENGTH : HIFN_IV_LENGTH);
  2086. /*FALLTHROUGH*/
  2087. case CRYPTO_ARC4:
  2088. if (cry) {
  2089. DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
  2090. return (EINVAL);
  2091. }
  2092. cry = 1;
  2093. break;
  2094. default:
  2095. DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
  2096. return (EINVAL);
  2097. }
  2098. }
  2099. if (mac == 0 && cry == 0) {
  2100. DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
  2101. return (EINVAL);
  2102. }
  2103. *sidp = HIFN_SID(device_get_unit(sc->sc_dev), sesn);
  2104. return (0);
  2105. }
  2106. /*
  2107. * Deallocate a session.
  2108. * XXX this routine should run a zero'd mac/encrypt key into context ram.
  2109. * XXX to blow away any keys already stored there.
  2110. */
  2111. static int
  2112. hifn_freesession(device_t dev, u_int64_t tid)
  2113. {
  2114. struct hifn_softc *sc = device_get_softc(dev);
  2115. int session, error;
  2116. u_int32_t sid = CRYPTO_SESID2LID(tid);
  2117. unsigned long l_flags;
  2118. DPRINTF("%s()\n", __FUNCTION__);
  2119. KASSERT(sc != NULL, ("hifn_freesession: null softc"));
  2120. if (sc == NULL) {
  2121. DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
  2122. return (EINVAL);
  2123. }
  2124. HIFN_LOCK(sc);
  2125. session = HIFN_SESSION(sid);
  2126. if (session < sc->sc_nsessions) {
  2127. bzero(&sc->sc_sessions[session], sizeof(struct hifn_session));
  2128. error = 0;
  2129. } else {
  2130. DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
  2131. error = EINVAL;
  2132. }
  2133. HIFN_UNLOCK(sc);
  2134. return (error);
  2135. }
  2136. static int
  2137. hifn_process(device_t dev, struct cryptop *crp, int hint)
  2138. {
  2139. struct hifn_softc *sc = device_get_softc(dev);
  2140. struct hifn_command *cmd = NULL;
  2141. int session, err, ivlen;
  2142. struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
  2143. DPRINTF("%s()\n", __FUNCTION__);
  2144. if (crp == NULL || crp->crp_callback == NULL) {
  2145. hifnstats.hst_invalid++;
  2146. DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
  2147. return (EINVAL);
  2148. }
  2149. session = HIFN_SESSION(crp->crp_sid);
  2150. if (sc == NULL || session >= sc->sc_nsessions) {
  2151. DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
  2152. err = EINVAL;
  2153. goto errout;
  2154. }
  2155. cmd = kmalloc(sizeof(struct hifn_command), SLAB_ATOMIC);
  2156. if (cmd == NULL) {
  2157. hifnstats.hst_nomem++;
  2158. err = ENOMEM;
  2159. goto errout;
  2160. }
  2161. memset(cmd, 0, sizeof(*cmd));
  2162. if (crp->crp_flags & CRYPTO_F_SKBUF) {
  2163. cmd->src_skb = (struct sk_buff *)crp->crp_buf;
  2164. cmd->dst_skb = (struct sk_buff *)crp->crp_buf;
  2165. } else if (crp->crp_flags & CRYPTO_F_IOV) {
  2166. cmd->src_io = (struct uio *)crp->crp_buf;
  2167. cmd->dst_io = (struct uio *)crp->crp_buf;
  2168. } else {
  2169. cmd->src_buf = crp->crp_buf;
  2170. cmd->dst_buf = crp->crp_buf;
  2171. }
  2172. crd1 = crp->crp_desc;
  2173. if (crd1 == NULL) {
  2174. DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
  2175. err = EINVAL;
  2176. goto errout;
  2177. }
  2178. crd2 = crd1->crd_next;
  2179. if (crd2 == NULL) {
  2180. if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
  2181. crd1->crd_alg == CRYPTO_SHA1_HMAC ||
  2182. crd1->crd_alg == CRYPTO_SHA1 ||
  2183. crd1->crd_alg == CRYPTO_MD5) {
  2184. maccrd = crd1;
  2185. enccrd = NULL;
  2186. } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
  2187. crd1->crd_alg == CRYPTO_3DES_CBC ||
  2188. crd1->crd_alg == CRYPTO_AES_CBC ||
  2189. crd1->crd_alg == CRYPTO_ARC4) {
  2190. if ((crd1->crd_flags & CRD_F_ENCRYPT) == 0)
  2191. cmd->base_masks |= HIFN_BASE_CMD_DECODE;
  2192. maccrd = NULL;
  2193. enccrd = crd1;
  2194. } else {
  2195. DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
  2196. err = EINVAL;
  2197. goto errout;
  2198. }
  2199. } else {
  2200. if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
  2201. crd1->crd_alg == CRYPTO_SHA1_HMAC ||
  2202. crd1->crd_alg == CRYPTO_MD5 ||
  2203. crd1->crd_alg == CRYPTO_SHA1) &&
  2204. (crd2->crd_alg == CRYPTO_DES_CBC ||
  2205. crd2->crd_alg == CRYPTO_3DES_CBC ||
  2206. crd2->crd_alg == CRYPTO_AES_CBC ||
  2207. crd2->crd_alg == CRYPTO_ARC4) &&
  2208. ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
  2209. cmd->base_masks = HIFN_BASE_CMD_DECODE;
  2210. maccrd = crd1;
  2211. enccrd = crd2;
  2212. } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
  2213. crd1->crd_alg == CRYPTO_ARC4 ||
  2214. crd1->crd_alg == CRYPTO_3DES_CBC ||
  2215. crd1->crd_alg == CRYPTO_AES_CBC) &&
  2216. (crd2->crd_alg == CRYPTO_MD5_HMAC ||
  2217. crd2->crd_alg == CRYPTO_SHA1_HMAC ||
  2218. crd2->crd_alg == CRYPTO_MD5 ||
  2219. crd2->crd_alg == CRYPTO_SHA1) &&
  2220. (crd1->crd_flags & CRD_F_ENCRYPT)) {
  2221. enccrd = crd1;
  2222. maccrd = crd2;
  2223. } else {
  2224. /*
  2225. * We cannot order the 7751 as requested
  2226. */
  2227. DPRINTF("%s,%d: %s %d,%d,%d - EINVAL\n",__FILE__,__LINE__,__FUNCTION__, crd1->crd_alg, crd2->crd_alg, crd1->crd_flags & CRD_F_ENCRYPT);
  2228. err = EINVAL;
  2229. goto errout;
  2230. }
  2231. }
  2232. if (enccrd) {
  2233. cmd->enccrd = enccrd;
  2234. cmd->base_masks |= HIFN_BASE_CMD_CRYPT;
  2235. switch (enccrd->crd_alg) {
  2236. case CRYPTO_ARC4:
  2237. cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_RC4;
  2238. break;
  2239. case CRYPTO_DES_CBC:
  2240. cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_DES |
  2241. HIFN_CRYPT_CMD_MODE_CBC |
  2242. HIFN_CRYPT_CMD_NEW_IV;
  2243. break;
  2244. case CRYPTO_3DES_CBC:
  2245. cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_3DES |
  2246. HIFN_CRYPT_CMD_MODE_CBC |
  2247. HIFN_CRYPT_CMD_NEW_IV;
  2248. break;
  2249. case CRYPTO_AES_CBC:
  2250. cmd->cry_masks |= HIFN_CRYPT_CMD_ALG_AES |
  2251. HIFN_CRYPT_CMD_MODE_CBC |
  2252. HIFN_CRYPT_CMD_NEW_IV;
  2253. break;
  2254. default:
  2255. DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
  2256. err = EINVAL;
  2257. goto errout;
  2258. }
  2259. if (enccrd->crd_alg != CRYPTO_ARC4) {
  2260. ivlen = ((enccrd->crd_alg == CRYPTO_AES_CBC) ?
  2261. HIFN_AES_IV_LENGTH : HIFN_IV_LENGTH);
  2262. if (enccrd->crd_flags & CRD_F_ENCRYPT) {
  2263. if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
  2264. bcopy(enccrd->crd_iv, cmd->iv, ivlen);
  2265. else
  2266. bcopy(sc->sc_sessions[session].hs_iv,
  2267. cmd->iv, ivlen);
  2268. if ((enccrd->crd_flags & CRD_F_IV_PRESENT)
  2269. == 0) {
  2270. crypto_copyback(crp->crp_flags,
  2271. crp->crp_buf, enccrd->crd_inject,
  2272. ivlen, cmd->iv);
  2273. }
  2274. } else {
  2275. if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
  2276. bcopy(enccrd->crd_iv, cmd->iv, ivlen);
  2277. else {
  2278. crypto_copydata(crp->crp_flags,
  2279. crp->crp_buf, enccrd->crd_inject,
  2280. ivlen, cmd->iv);
  2281. }
  2282. }
  2283. }
  2284. if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
  2285. cmd->cry_masks |= HIFN_CRYPT_CMD_NEW_KEY;
  2286. cmd->ck = enccrd->crd_key;
  2287. cmd->cklen = enccrd->crd_klen >> 3;
  2288. cmd->cry_masks |= HIFN_CRYPT_CMD_NEW_KEY;
  2289. /*
  2290. * Need to specify the size for the AES key in the masks.
  2291. */
  2292. if ((cmd->cry_masks & HIFN_CRYPT_CMD_ALG_MASK) ==
  2293. HIFN_CRYPT_CMD_ALG_AES) {
  2294. switch (cmd->cklen) {
  2295. case 16:
  2296. cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_128;
  2297. break;
  2298. case 24:
  2299. cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_192;
  2300. break;
  2301. case 32:
  2302. cmd->cry_masks |= HIFN_CRYPT_CMD_KSZ_256;
  2303. break;
  2304. default:
  2305. DPRINTF("%s,%d: %s - EINVAL\n",__FILE__,__LINE__,__FUNCTION__);
  2306. err = EINVAL;
  2307. goto errout;
  2308. }
  2309. }
  2310. }
  2311. if (maccrd) {
  2312. cmd->maccrd = maccrd;
  2313. cmd->base_masks |= HIFN_BASE_CMD_MAC;
  2314. switch (maccrd->crd_alg) {
  2315. case CRYPTO_MD5:
  2316. cmd->mac_masks |= HIFN_MAC_CMD_ALG_MD5 |
  2317. HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HASH |
  2318. HIFN_MAC_CMD_POS_IPSEC;
  2319. break;
  2320. case CRYPTO_MD5_HMAC:
  2321. cmd->mac_masks |= HIFN_MAC_CMD_ALG_MD5 |
  2322. HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HMAC |
  2323. HIFN_MAC_CMD_POS_IPSEC | HIFN_MAC_CMD_TRUNC;
  2324. break;
  2325. case CRYPTO_SHA1:
  2326. cmd->mac_masks |= HIFN_MAC_CMD_ALG_SHA1 |
  2327. HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HASH |
  2328. HIFN_MAC_CMD_POS_IPSEC;
  2329. break;
  2330. case CRYPTO_SHA1_HMAC:
  2331. cmd->mac_masks |= HIFN_MAC_CMD_ALG_SHA1 |
  2332. HIFN_MAC_CMD_RESULT | HIFN_MAC_CMD_MODE_HMAC |
  2333. HIFN_MAC_CMD_POS_IPSEC | HIFN_MAC_CMD_TRUNC;
  2334. break;
  2335. }
  2336. if (maccrd->crd_alg == CRYPTO_SHA1_HMAC ||
  2337. maccrd->crd_alg == CRYPTO_MD5_HMAC) {
  2338. cmd->mac_masks |= HIFN_MAC_CMD_NEW_KEY;
  2339. bcopy(maccrd->crd_key, cmd->mac, maccrd->crd_klen >> 3);
  2340. bzero(cmd->mac + (maccrd->crd_klen >> 3),
  2341. HIFN_MAC_KEY_LENGTH - (maccrd->crd_klen >> 3));
  2342. }
  2343. }
  2344. cmd->crp = crp;
  2345. cmd->session_num = session;
  2346. cmd->softc = sc;
  2347. err = hifn_crypto(sc, cmd, crp, hint);
  2348. if (!err) {
  2349. return 0;
  2350. } else if (err == ERESTART) {
  2351. /*
  2352. * There weren't enough resources to dispatch the request
  2353. * to the part. Notify the caller so they'll requeue this
  2354. * request and resubmit it again soon.
  2355. */
  2356. #ifdef HIFN_DEBUG
  2357. if (hifn_debug)
  2358. device_printf(sc->sc_dev, "requeue request\n");
  2359. #endif
  2360. kfree(cmd);
  2361. sc->sc_needwakeup |= CRYPTO_SYMQ;
  2362. return (err);
  2363. }
  2364. errout:
  2365. if (cmd != NULL)
  2366. kfree(cmd);
  2367. if (err == EINVAL)
  2368. hifnstats.hst_invalid++;
  2369. else
  2370. hifnstats.hst_nomem++;
  2371. crp->crp_etype = err;
  2372. crypto_done(crp);
  2373. return (err);
  2374. }
  2375. static void
  2376. hifn_abort(struct hifn_softc *sc)
  2377. {
  2378. struct hifn_dma *dma = sc->sc_dma;
  2379. struct hifn_command *cmd;
  2380. struct cryptop *crp;
  2381. int i, u;
  2382. DPRINTF("%s()\n", __FUNCTION__);
  2383. i = dma->resk; u = dma->resu;
  2384. while (u != 0) {
  2385. cmd = dma->hifn_commands[i];
  2386. KASSERT(cmd != NULL, ("hifn_abort: null command slot %u", i));
  2387. dma->hifn_commands[i] = NULL;
  2388. crp = cmd->crp;
  2389. if ((dma->resr[i].l & htole32(HIFN_D_VALID)) == 0) {
  2390. /* Salvage what we can. */
  2391. u_int8_t *macbuf;
  2392. if (cmd->base_masks & HIFN_BASE_CMD_MAC) {
  2393. macbuf = dma->result_bufs[i];
  2394. macbuf += 12;
  2395. } else
  2396. macbuf = NULL;
  2397. hifnstats.hst_opackets++;
  2398. hifn_callback(sc, cmd, macbuf);
  2399. } else {
  2400. #if 0
  2401. if (cmd->src_map == cmd->dst_map) {
  2402. bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
  2403. BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
  2404. } else {
  2405. bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
  2406. BUS_DMASYNC_POSTWRITE);
  2407. bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
  2408. BUS_DMASYNC_POSTREAD);
  2409. }
  2410. #endif
  2411. if (cmd->src_skb != cmd->dst_skb) {
  2412. #ifdef NOTYET
  2413. m_freem(cmd->src_m);
  2414. crp->crp_buf = (caddr_t)cmd->dst_m;
  2415. #else
  2416. device_printf(sc->sc_dev,
  2417. "%s,%d: CRYPTO_F_SKBUF src != dst not implemented\n",
  2418. __FILE__, __LINE__);
  2419. #endif
  2420. }
  2421. /* non-shared buffers cannot be restarted */
  2422. if (cmd->src_map != cmd->dst_map) {
  2423. /*
  2424. * XXX should be EAGAIN, delayed until
  2425. * after the reset.
  2426. */
  2427. crp->crp_etype = ENOMEM;
  2428. pci_unmap_buf(sc, &cmd->dst);
  2429. } else
  2430. crp->crp_etype = ENOMEM;
  2431. pci_unmap_buf(sc, &cmd->src);
  2432. kfree(cmd);
  2433. if (crp->crp_etype != EAGAIN)
  2434. crypto_done(crp);
  2435. }
  2436. if (++i == HIFN_D_RES_RSIZE)
  2437. i = 0;
  2438. u--;
  2439. }
  2440. dma->resk = i; dma->resu = u;
  2441. hifn_reset_board(sc, 1);
  2442. hifn_init_dma(sc);
  2443. hifn_init_pci_registers(sc);
  2444. }
  2445. static void
  2446. hifn_callback(struct hifn_softc *sc, struct hifn_command *cmd, u_int8_t *macbuf)
  2447. {
  2448. struct hifn_dma *dma = sc->sc_dma;
  2449. struct cryptop *crp = cmd->crp;
  2450. struct cryptodesc *crd;
  2451. int i, u, ivlen;
  2452. DPRINTF("%s()\n", __FUNCTION__);
  2453. #if 0
  2454. if (cmd->src_map == cmd->dst_map) {
  2455. bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
  2456. BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
  2457. } else {
  2458. bus_dmamap_sync(sc->sc_dmat, cmd->src_map,
  2459. BUS_DMASYNC_POSTWRITE);
  2460. bus_dmamap_sync(sc->sc_dmat, cmd->dst_map,
  2461. BUS_DMASYNC_POSTREAD);
  2462. }
  2463. #endif
  2464. if (crp->crp_flags & CRYPTO_F_SKBUF) {
  2465. if (cmd->src_skb != cmd->dst_skb) {
  2466. #ifdef NOTYET
  2467. crp->crp_buf = (caddr_t)cmd->dst_m;
  2468. totlen = cmd->src_mapsize;
  2469. for (m = cmd->dst_m; m != NULL; m = m->m_next) {
  2470. if (totlen < m->m_len) {
  2471. m->m_len = totlen;
  2472. totlen = 0;
  2473. } else
  2474. totlen -= m->m_len;
  2475. }
  2476. cmd->dst_m->m_pkthdr.len = cmd->src_m->m_pkthdr.len;
  2477. m_freem(cmd->src_m);
  2478. #else
  2479. device_printf(sc->sc_dev,
  2480. "%s,%d: CRYPTO_F_SKBUF src != dst not implemented\n",
  2481. __FILE__, __LINE__);
  2482. #endif
  2483. }
  2484. }
  2485. if (cmd->sloplen != 0) {
  2486. crypto_copyback(crp->crp_flags, crp->crp_buf,
  2487. cmd->src_mapsize - cmd->sloplen, cmd->sloplen,
  2488. (caddr_t)&dma->slop[cmd->slopidx]);
  2489. }
  2490. i = dma->dstk; u = dma->dstu;
  2491. while (u != 0) {
  2492. if (i == HIFN_D_DST_RSIZE)
  2493. i = 0;
  2494. #if 0
  2495. bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
  2496. BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  2497. #endif
  2498. if (dma->dstr[i].l & htole32(HIFN_D_VALID)) {
  2499. #if 0
  2500. bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
  2501. BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  2502. #endif
  2503. break;
  2504. }
  2505. i++, u--;
  2506. }
  2507. dma->dstk = i; dma->dstu = u;
  2508. hifnstats.hst_obytes += cmd->dst_mapsize;
  2509. if ((cmd->base_masks & (HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE)) ==
  2510. HIFN_BASE_CMD_CRYPT) {
  2511. for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
  2512. if (crd->crd_alg != CRYPTO_DES_CBC &&
  2513. crd->crd_alg != CRYPTO_3DES_CBC &&
  2514. crd->crd_alg != CRYPTO_AES_CBC)
  2515. continue;
  2516. ivlen = ((crd->crd_alg == CRYPTO_AES_CBC) ?
  2517. HIFN_AES_IV_LENGTH : HIFN_IV_LENGTH);
  2518. crypto_copydata(crp->crp_flags, crp->crp_buf,
  2519. crd->crd_skip + crd->crd_len - ivlen, ivlen,
  2520. cmd->softc->sc_sessions[cmd->session_num].hs_iv);
  2521. break;
  2522. }
  2523. }
  2524. if (macbuf != NULL) {
  2525. for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
  2526. int len;
  2527. if (crd->crd_alg != CRYPTO_MD5 &&
  2528. crd->crd_alg != CRYPTO_SHA1 &&
  2529. crd->crd_alg != CRYPTO_MD5_HMAC &&
  2530. crd->crd_alg != CRYPTO_SHA1_HMAC) {
  2531. continue;
  2532. }
  2533. len = cmd->softc->sc_sessions[cmd->session_num].hs_mlen;
  2534. crypto_copyback(crp->crp_flags, crp->crp_buf,
  2535. crd->crd_inject, len, macbuf);
  2536. break;
  2537. }
  2538. }
  2539. if (cmd->src_map != cmd->dst_map)
  2540. pci_unmap_buf(sc, &cmd->dst);
  2541. pci_unmap_buf(sc, &cmd->src);
  2542. kfree(cmd);
  2543. crypto_done(crp);
  2544. }
  2545. /*
  2546. * 7811 PB3 rev/2 parts lock-up on burst writes to Group 0
  2547. * and Group 1 registers; avoid conditions that could create
  2548. * burst writes by doing a read in between the writes.
  2549. *
  2550. * NB: The read we interpose is always to the same register;
  2551. * we do this because reading from an arbitrary (e.g. last)
  2552. * register may not always work.
  2553. */
  2554. static void
  2555. hifn_write_reg_0(struct hifn_softc *sc, bus_size_t reg, u_int32_t val)
  2556. {
  2557. if (sc->sc_flags & HIFN_IS_7811) {
  2558. if (sc->sc_bar0_lastreg == reg - 4)
  2559. readl(sc->sc_bar0 + HIFN_0_PUCNFG);
  2560. sc->sc_bar0_lastreg = reg;
  2561. }
  2562. writel(val, sc->sc_bar0 + reg);
  2563. }
  2564. static void
  2565. hifn_write_reg_1(struct hifn_softc *sc, bus_size_t reg, u_int32_t val)
  2566. {
  2567. if (sc->sc_flags & HIFN_IS_7811) {
  2568. if (sc->sc_bar1_lastreg == reg - 4)
  2569. readl(sc->sc_bar1 + HIFN_1_REVID);
  2570. sc->sc_bar1_lastreg = reg;
  2571. }
  2572. writel(val, sc->sc_bar1 + reg);
  2573. }
  2574. static struct pci_device_id hifn_pci_tbl[] = {
  2575. { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7951,
  2576. PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
  2577. { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7955,
  2578. PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
  2579. { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7956,
  2580. PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
  2581. { PCI_VENDOR_NETSEC, PCI_PRODUCT_NETSEC_7751,
  2582. PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
  2583. { PCI_VENDOR_INVERTEX, PCI_PRODUCT_INVERTEX_AEON,
  2584. PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
  2585. { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7811,
  2586. PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
  2587. /*
  2588. * Other vendors share this PCI ID as well, such as
  2589. * http://www.powercrypt.com, and obviously they also
  2590. * use the same key.
  2591. */
  2592. { PCI_VENDOR_HIFN, PCI_PRODUCT_HIFN_7751,
  2593. PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
  2594. { 0, 0, 0, 0, 0, 0, }
  2595. };
  2596. MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
  2597. static struct pci_driver hifn_driver = {
  2598. .name = "hifn",
  2599. .id_table = hifn_pci_tbl,
  2600. .probe = hifn_probe,
  2601. .remove = hifn_remove,
  2602. /* add PM stuff here one day */
  2603. };
  2604. static int __init hifn_init (void)
  2605. {
  2606. struct hifn_softc *sc = NULL;
  2607. int rc;
  2608. DPRINTF("%s(%p)\n", __FUNCTION__, hifn_init);
  2609. rc = pci_register_driver(&hifn_driver);
  2610. pci_register_driver_compat(&hifn_driver, rc);
  2611. return rc;
  2612. }
  2613. static void __exit hifn_exit (void)
  2614. {
  2615. pci_unregister_driver(&hifn_driver);
  2616. }
  2617. module_init(hifn_init);
  2618. module_exit(hifn_exit);
  2619. MODULE_LICENSE("BSD");
  2620. MODULE_AUTHOR("David McCullough <[email protected]>");
  2621. MODULE_DESCRIPTION("OCF driver for hifn PCI crypto devices");