120-12-v5.19-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537
  1. From 8170bafa8936e9fbfdce992932a63bd20eca3bc3 Mon Sep 17 00:00:00 2001
  2. From: Chuanhong Guo <[email protected]>
  3. Date: Sat, 2 Apr 2022 10:16:11 +0800
  4. Subject: [PATCH v6 2/5] spi: add driver for MTK SPI NAND Flash Interface
  5. This driver implements support for the SPI-NAND mode of MTK NAND Flash
  6. Interface as a SPI-MEM controller with pipelined ECC capability.
  7. Signed-off-by: Chuanhong Guo <[email protected]>
  8. Tested-by: Daniel Golle <[email protected]>
  9. ---
  10. Change since v1:
  11. fix CI warnings
  12. Changes since v2:
  13. use streamed DMA api to avoid an extra memory copy during read
  14. make ECC engine config a per-nand context
  15. take user-requested ECC strength into account
  16. Change since v3: none
  17. Changes since v4:
  18. fix missing OOB write
  19. print page format with dev_dbg
  20. replace uint*_t copied from vendor driver with u*
  21. Changes since v5:
  22. add missing nfi mode register configuration in probe
  23. fix an off-by-one bug in mtk_snand_mac_io
  24. drivers/spi/Kconfig | 10 +
  25. drivers/spi/Makefile | 1 +
  26. drivers/spi/spi-mtk-snfi.c | 1470 ++++++++++++++++++++++++++++++++++++
  27. 3 files changed, 1481 insertions(+)
  28. create mode 100644 drivers/spi/spi-mtk-snfi.c
  29. --- a/drivers/spi/Kconfig
  30. +++ b/drivers/spi/Kconfig
  31. @@ -530,6 +530,16 @@ config SPI_MTK_NOR
  32. SPI interface as well as several SPI NOR specific instructions
  33. via SPI MEM interface.
  34. +config SPI_MTK_SNFI
  35. + tristate "MediaTek SPI NAND Flash Interface"
  36. + depends on ARCH_MEDIATEK || COMPILE_TEST
  37. + depends on MTD_NAND_ECC_MEDIATEK
  38. + help
  39. + This enables support for SPI-NAND mode on the MediaTek NAND
  40. + Flash Interface found on MediaTek ARM SoCs. This controller
  41. + is implemented as a SPI-MEM controller with pipelined ECC
  42. + capcability.
  43. +
  44. config SPI_NPCM_FIU
  45. tristate "Nuvoton NPCM FLASH Interface Unit"
  46. depends on ARCH_NPCM || COMPILE_TEST
  47. --- a/drivers/spi/Makefile
  48. +++ b/drivers/spi/Makefile
  49. @@ -71,6 +71,7 @@ obj-$(CONFIG_SPI_MPC52xx) += spi-mpc52x
  50. obj-$(CONFIG_SPI_MT65XX) += spi-mt65xx.o
  51. obj-$(CONFIG_SPI_MT7621) += spi-mt7621.o
  52. obj-$(CONFIG_SPI_MTK_NOR) += spi-mtk-nor.o
  53. +obj-$(CONFIG_SPI_MTK_SNFI) += spi-mtk-snfi.o
  54. obj-$(CONFIG_SPI_MXIC) += spi-mxic.o
  55. obj-$(CONFIG_SPI_MXS) += spi-mxs.o
  56. obj-$(CONFIG_SPI_NPCM_FIU) += spi-npcm-fiu.o
  57. --- /dev/null
  58. +++ b/drivers/spi/spi-mtk-snfi.c
  59. @@ -0,0 +1,1470 @@
  60. +// SPDX-License-Identifier: GPL-2.0
  61. +//
  62. +// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
  63. +//
  64. +// Copyright (c) 2022 Chuanhong Guo <[email protected]>
  65. +//
  66. +// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
  67. +//
  68. +// Copyright (C) 2020 MediaTek Inc.
  69. +// Author: Weijie Gao <[email protected]>
  70. +//
  71. +// This controller organize the page data as several interleaved sectors
  72. +// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
  73. +// +---------+------+------+---------+------+------+-----+
  74. +// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
  75. +// +---------+------+------+---------+------+------+-----+
  76. +// With auto-format turned on, DMA only returns this part:
  77. +// +---------+---------+-----+
  78. +// | Sector1 | Sector2 | ... |
  79. +// +---------+---------+-----+
  80. +// The FDM data will be filled to the registers, and ECC parity data isn't
  81. +// accessible.
  82. +// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
  83. +// in it's original order shown in the first table. ECC can't be turned on when
  84. +// auto-format is off.
  85. +//
  86. +// However, Linux SPI-NAND driver expects the data returned as:
  87. +// +------+-----+
  88. +// | Page | OOB |
  89. +// +------+-----+
  90. +// where the page data is continuously stored instead of interleaved.
  91. +// So we assume all instructions matching the page_op template between ECC
  92. +// prepare_io_req and finish_io_req are for page cache r/w.
  93. +// Here's how this spi-mem driver operates when reading:
  94. +// 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
  95. +// 2. Perform page ops and let the controller fill the DMA bounce buffer with
  96. +// de-interleaved sector data and set FDM registers.
  97. +// 3. Return the data as:
  98. +// +---------+---------+-----+------+------+-----+
  99. +// | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
  100. +// +---------+---------+-----+------+------+-----+
  101. +// 4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
  102. +// read the data with auto-format off into the bounce buffer and copy
  103. +// needed data to the buffer specified in the request.
  104. +//
  105. +// Write requests operates in a similar manner.
  106. +// As a limitation of this strategy, we won't be able to access any ECC parity
  107. +// data at all in Linux.
  108. +//
  109. +// Here's the bad block mark situation on MTK chips:
  110. +// In older chips like mt7622, MTK uses the first FDM byte in the first sector
  111. +// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
  112. +// in the returned data, which is the BBM position expected by kernel. However,
  113. +// the conventional bad block mark is the first byte of the OOB, which is part
  114. +// of the last sector data in the interleaved layout. Instead of fixing their
  115. +// hardware, MTK decided to address this inconsistency in software. On these
  116. +// later chips, the BootROM expects the following:
  117. +// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
  118. +// (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
  119. +// 2. The original byte stored at that position in the DMA buffer will be stored
  120. +// as the first byte of the FDM section in the last sector.
  121. +// We can't disagree with the BootROM, so after de-interleaving, we need to
  122. +// perform the following swaps in read:
  123. +// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
  124. +// which is the expected BBM position by kernel.
  125. +// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
  126. +// [page_size - (nsectors - 1) * spare_size]
  127. +// Similarly, when writing, we need to perform swaps in the other direction.
  128. +
  129. +#include <linux/kernel.h>
  130. +#include <linux/module.h>
  131. +#include <linux/init.h>
  132. +#include <linux/device.h>
  133. +#include <linux/mutex.h>
  134. +#include <linux/clk.h>
  135. +#include <linux/interrupt.h>
  136. +#include <linux/dma-mapping.h>
  137. +#include <linux/iopoll.h>
  138. +#include <linux/of_platform.h>
  139. +#include <linux/mtd/nand-ecc-mtk.h>
  140. +#include <linux/spi/spi.h>
  141. +#include <linux/spi/spi-mem.h>
  142. +#include <linux/mtd/nand.h>
  143. +
  144. +// NFI registers
  145. +#define NFI_CNFG 0x000
  146. +#define CNFG_OP_MODE_S 12
  147. +#define CNFG_OP_MODE_CUST 6
  148. +#define CNFG_OP_MODE_PROGRAM 3
  149. +#define CNFG_AUTO_FMT_EN BIT(9)
  150. +#define CNFG_HW_ECC_EN BIT(8)
  151. +#define CNFG_DMA_BURST_EN BIT(2)
  152. +#define CNFG_READ_MODE BIT(1)
  153. +#define CNFG_DMA_MODE BIT(0)
  154. +
  155. +#define NFI_PAGEFMT 0x0004
  156. +#define NFI_SPARE_SIZE_LS_S 16
  157. +#define NFI_FDM_ECC_NUM_S 12
  158. +#define NFI_FDM_NUM_S 8
  159. +#define NFI_SPARE_SIZE_S 4
  160. +#define NFI_SEC_SEL_512 BIT(2)
  161. +#define NFI_PAGE_SIZE_S 0
  162. +#define NFI_PAGE_SIZE_512_2K 0
  163. +#define NFI_PAGE_SIZE_2K_4K 1
  164. +#define NFI_PAGE_SIZE_4K_8K 2
  165. +#define NFI_PAGE_SIZE_8K_16K 3
  166. +
  167. +#define NFI_CON 0x008
  168. +#define CON_SEC_NUM_S 12
  169. +#define CON_BWR BIT(9)
  170. +#define CON_BRD BIT(8)
  171. +#define CON_NFI_RST BIT(1)
  172. +#define CON_FIFO_FLUSH BIT(0)
  173. +
  174. +#define NFI_INTR_EN 0x010
  175. +#define NFI_INTR_STA 0x014
  176. +#define NFI_IRQ_INTR_EN BIT(31)
  177. +#define NFI_IRQ_CUS_READ BIT(8)
  178. +#define NFI_IRQ_CUS_PG BIT(7)
  179. +
  180. +#define NFI_CMD 0x020
  181. +#define NFI_CMD_DUMMY_READ 0x00
  182. +#define NFI_CMD_DUMMY_WRITE 0x80
  183. +
  184. +#define NFI_STRDATA 0x040
  185. +#define STR_DATA BIT(0)
  186. +
  187. +#define NFI_STA 0x060
  188. +#define NFI_NAND_FSM GENMASK(28, 24)
  189. +#define NFI_FSM GENMASK(19, 16)
  190. +#define READ_EMPTY BIT(12)
  191. +
  192. +#define NFI_FIFOSTA 0x064
  193. +#define FIFO_WR_REMAIN_S 8
  194. +#define FIFO_RD_REMAIN_S 0
  195. +
  196. +#define NFI_ADDRCNTR 0x070
  197. +#define SEC_CNTR GENMASK(16, 12)
  198. +#define SEC_CNTR_S 12
  199. +#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
  200. +
  201. +#define NFI_STRADDR 0x080
  202. +
  203. +#define NFI_BYTELEN 0x084
  204. +#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
  205. +
  206. +#define NFI_FDM0L 0x0a0
  207. +#define NFI_FDM0M 0x0a4
  208. +#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
  209. +#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
  210. +
  211. +#define NFI_DEBUG_CON1 0x220
  212. +#define WBUF_EN BIT(2)
  213. +
  214. +#define NFI_MASTERSTA 0x224
  215. +#define MAS_ADDR GENMASK(11, 9)
  216. +#define MAS_RD GENMASK(8, 6)
  217. +#define MAS_WR GENMASK(5, 3)
  218. +#define MAS_RDDLY GENMASK(2, 0)
  219. +#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
  220. +
  221. +// SNFI registers
  222. +#define SNF_MAC_CTL 0x500
  223. +#define MAC_XIO_SEL BIT(4)
  224. +#define SF_MAC_EN BIT(3)
  225. +#define SF_TRIG BIT(2)
  226. +#define WIP_READY BIT(1)
  227. +#define WIP BIT(0)
  228. +
  229. +#define SNF_MAC_OUTL 0x504
  230. +#define SNF_MAC_INL 0x508
  231. +
  232. +#define SNF_RD_CTL2 0x510
  233. +#define DATA_READ_DUMMY_S 8
  234. +#define DATA_READ_MAX_DUMMY 0xf
  235. +#define DATA_READ_CMD_S 0
  236. +
  237. +#define SNF_RD_CTL3 0x514
  238. +
  239. +#define SNF_PG_CTL1 0x524
  240. +#define PG_LOAD_CMD_S 8
  241. +
  242. +#define SNF_PG_CTL2 0x528
  243. +
  244. +#define SNF_MISC_CTL 0x538
  245. +#define SW_RST BIT(28)
  246. +#define FIFO_RD_LTC_S 25
  247. +#define PG_LOAD_X4_EN BIT(20)
  248. +#define DATA_READ_MODE_S 16
  249. +#define DATA_READ_MODE GENMASK(18, 16)
  250. +#define DATA_READ_MODE_X1 0
  251. +#define DATA_READ_MODE_X2 1
  252. +#define DATA_READ_MODE_X4 2
  253. +#define DATA_READ_MODE_DUAL 5
  254. +#define DATA_READ_MODE_QUAD 6
  255. +#define PG_LOAD_CUSTOM_EN BIT(7)
  256. +#define DATARD_CUSTOM_EN BIT(6)
  257. +#define CS_DESELECT_CYC_S 0
  258. +
  259. +#define SNF_MISC_CTL2 0x53c
  260. +#define PROGRAM_LOAD_BYTE_NUM_S 16
  261. +#define READ_DATA_BYTE_NUM_S 11
  262. +
  263. +#define SNF_DLY_CTL3 0x548
  264. +#define SFCK_SAM_DLY_S 0
  265. +
  266. +#define SNF_STA_CTL1 0x550
  267. +#define CUS_PG_DONE BIT(28)
  268. +#define CUS_READ_DONE BIT(27)
  269. +#define SPI_STATE_S 0
  270. +#define SPI_STATE GENMASK(3, 0)
  271. +
  272. +#define SNF_CFG 0x55c
  273. +#define SPI_MODE BIT(0)
  274. +
  275. +#define SNF_GPRAM 0x800
  276. +#define SNF_GPRAM_SIZE 0xa0
  277. +
  278. +#define SNFI_POLL_INTERVAL 1000000
  279. +
  280. +static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
  281. +
  282. +struct mtk_snand_caps {
  283. + u16 sector_size;
  284. + u16 max_sectors;
  285. + u16 fdm_size;
  286. + u16 fdm_ecc_size;
  287. + u16 fifo_size;
  288. +
  289. + bool bbm_swap;
  290. + bool empty_page_check;
  291. + u32 mastersta_mask;
  292. +
  293. + const u8 *spare_sizes;
  294. + u32 num_spare_size;
  295. +};
  296. +
  297. +static const struct mtk_snand_caps mt7622_snand_caps = {
  298. + .sector_size = 512,
  299. + .max_sectors = 8,
  300. + .fdm_size = 8,
  301. + .fdm_ecc_size = 1,
  302. + .fifo_size = 32,
  303. + .bbm_swap = false,
  304. + .empty_page_check = false,
  305. + .mastersta_mask = NFI_MASTERSTA_MASK_7622,
  306. + .spare_sizes = mt7622_spare_sizes,
  307. + .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
  308. +};
  309. +
  310. +static const struct mtk_snand_caps mt7629_snand_caps = {
  311. + .sector_size = 512,
  312. + .max_sectors = 8,
  313. + .fdm_size = 8,
  314. + .fdm_ecc_size = 1,
  315. + .fifo_size = 32,
  316. + .bbm_swap = true,
  317. + .empty_page_check = false,
  318. + .mastersta_mask = NFI_MASTERSTA_MASK_7622,
  319. + .spare_sizes = mt7622_spare_sizes,
  320. + .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
  321. +};
  322. +
  323. +struct mtk_snand_conf {
  324. + size_t page_size;
  325. + size_t oob_size;
  326. + u8 nsectors;
  327. + u8 spare_size;
  328. +};
  329. +
  330. +struct mtk_snand {
  331. + struct spi_controller *ctlr;
  332. + struct device *dev;
  333. + struct clk *nfi_clk;
  334. + struct clk *pad_clk;
  335. + void __iomem *nfi_base;
  336. + int irq;
  337. + struct completion op_done;
  338. + const struct mtk_snand_caps *caps;
  339. + struct mtk_ecc_config *ecc_cfg;
  340. + struct mtk_ecc *ecc;
  341. + struct mtk_snand_conf nfi_cfg;
  342. + struct mtk_ecc_stats ecc_stats;
  343. + struct nand_ecc_engine ecc_eng;
  344. + bool autofmt;
  345. + u8 *buf;
  346. + size_t buf_len;
  347. +};
  348. +
  349. +static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
  350. +{
  351. + struct nand_ecc_engine *eng = nand->ecc.engine;
  352. +
  353. + return container_of(eng, struct mtk_snand, ecc_eng);
  354. +}
  355. +
  356. +static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
  357. +{
  358. + if (snf->buf_len >= size)
  359. + return 0;
  360. + kfree(snf->buf);
  361. + snf->buf = kmalloc(size, GFP_KERNEL);
  362. + if (!snf->buf)
  363. + return -ENOMEM;
  364. + snf->buf_len = size;
  365. + memset(snf->buf, 0xff, snf->buf_len);
  366. + return 0;
  367. +}
  368. +
  369. +static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
  370. +{
  371. + return readl(snf->nfi_base + reg);
  372. +}
  373. +
  374. +static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
  375. +{
  376. + writel(val, snf->nfi_base + reg);
  377. +}
  378. +
  379. +static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
  380. +{
  381. + writew(val, snf->nfi_base + reg);
  382. +}
  383. +
  384. +static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
  385. +{
  386. + u32 val;
  387. +
  388. + val = readl(snf->nfi_base + reg);
  389. + val &= ~clr;
  390. + val |= set;
  391. + writel(val, snf->nfi_base + reg);
  392. +}
  393. +
  394. +static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
  395. +{
  396. + u32 i, val = 0, es = sizeof(u32);
  397. +
  398. + for (i = reg; i < reg + len; i++) {
  399. + if (i == reg || i % es == 0)
  400. + val = nfi_read32(snf, i & ~(es - 1));
  401. +
  402. + *data++ = (u8)(val >> (8 * (i % es)));
  403. + }
  404. +}
  405. +
  406. +static int mtk_nfi_reset(struct mtk_snand *snf)
  407. +{
  408. + u32 val, fifo_mask;
  409. + int ret;
  410. +
  411. + nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
  412. +
  413. + ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
  414. + !(val & snf->caps->mastersta_mask), 0,
  415. + SNFI_POLL_INTERVAL);
  416. + if (ret) {
  417. + dev_err(snf->dev, "NFI master is still busy after reset\n");
  418. + return ret;
  419. + }
  420. +
  421. + ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
  422. + !(val & (NFI_FSM | NFI_NAND_FSM)), 0,
  423. + SNFI_POLL_INTERVAL);
  424. + if (ret) {
  425. + dev_err(snf->dev, "Failed to reset NFI\n");
  426. + return ret;
  427. + }
  428. +
  429. + fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
  430. + ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
  431. + ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
  432. + !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
  433. + if (ret) {
  434. + dev_err(snf->dev, "NFI FIFOs are not empty\n");
  435. + return ret;
  436. + }
  437. +
  438. + return 0;
  439. +}
  440. +
  441. +static int mtk_snand_mac_reset(struct mtk_snand *snf)
  442. +{
  443. + int ret;
  444. + u32 val;
  445. +
  446. + nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
  447. +
  448. + ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
  449. + !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
  450. + if (ret)
  451. + dev_err(snf->dev, "Failed to reset SNFI MAC\n");
  452. +
  453. + nfi_write32(snf, SNF_MISC_CTL,
  454. + (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
  455. +
  456. + return ret;
  457. +}
  458. +
  459. +static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
  460. +{
  461. + int ret;
  462. + u32 val;
  463. +
  464. + nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
  465. + nfi_write32(snf, SNF_MAC_OUTL, outlen);
  466. + nfi_write32(snf, SNF_MAC_INL, inlen);
  467. +
  468. + nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
  469. +
  470. + ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
  471. + val & WIP_READY, 0, SNFI_POLL_INTERVAL);
  472. + if (ret) {
  473. + dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
  474. + goto cleanup;
  475. + }
  476. +
  477. + ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
  478. + 0, SNFI_POLL_INTERVAL);
  479. + if (ret)
  480. + dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
  481. +
  482. +cleanup:
  483. + nfi_write32(snf, SNF_MAC_CTL, 0);
  484. +
  485. + return ret;
  486. +}
  487. +
  488. +static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
  489. +{
  490. + u32 rx_len = 0;
  491. + u32 reg_offs = 0;
  492. + u32 val = 0;
  493. + const u8 *tx_buf = NULL;
  494. + u8 *rx_buf = NULL;
  495. + int i, ret;
  496. + u8 b;
  497. +
  498. + if (op->data.dir == SPI_MEM_DATA_IN) {
  499. + rx_len = op->data.nbytes;
  500. + rx_buf = op->data.buf.in;
  501. + } else {
  502. + tx_buf = op->data.buf.out;
  503. + }
  504. +
  505. + mtk_snand_mac_reset(snf);
  506. +
  507. + for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
  508. + b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
  509. + val |= b << (8 * (reg_offs % 4));
  510. + if (reg_offs % 4 == 3) {
  511. + nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
  512. + val = 0;
  513. + }
  514. + }
  515. +
  516. + for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
  517. + b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
  518. + val |= b << (8 * (reg_offs % 4));
  519. + if (reg_offs % 4 == 3) {
  520. + nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
  521. + val = 0;
  522. + }
  523. + }
  524. +
  525. + for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
  526. + if (reg_offs % 4 == 3) {
  527. + nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
  528. + val = 0;
  529. + }
  530. + }
  531. +
  532. + if (op->data.dir == SPI_MEM_DATA_OUT) {
  533. + for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
  534. + val |= tx_buf[i] << (8 * (reg_offs % 4));
  535. + if (reg_offs % 4 == 3) {
  536. + nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
  537. + val = 0;
  538. + }
  539. + }
  540. + }
  541. +
  542. + if (reg_offs % 4)
  543. + nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
  544. +
  545. + for (i = 0; i < reg_offs; i += 4)
  546. + dev_dbg(snf->dev, "%d: %08X", i,
  547. + nfi_read32(snf, SNF_GPRAM + i));
  548. +
  549. + dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
  550. +
  551. + ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
  552. + if (ret)
  553. + return ret;
  554. +
  555. + if (!rx_len)
  556. + return 0;
  557. +
  558. + nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
  559. + return 0;
  560. +}
  561. +
  562. +static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
  563. + u32 oob_size)
  564. +{
  565. + int spare_idx = -1;
  566. + u32 spare_size, spare_size_shift, pagesize_idx;
  567. + u32 sector_size_512;
  568. + u8 nsectors;
  569. + int i;
  570. +
  571. + // skip if it's already configured as required.
  572. + if (snf->nfi_cfg.page_size == page_size &&
  573. + snf->nfi_cfg.oob_size == oob_size)
  574. + return 0;
  575. +
  576. + nsectors = page_size / snf->caps->sector_size;
  577. + if (nsectors > snf->caps->max_sectors) {
  578. + dev_err(snf->dev, "too many sectors required.\n");
  579. + goto err;
  580. + }
  581. +
  582. + if (snf->caps->sector_size == 512) {
  583. + sector_size_512 = NFI_SEC_SEL_512;
  584. + spare_size_shift = NFI_SPARE_SIZE_S;
  585. + } else {
  586. + sector_size_512 = 0;
  587. + spare_size_shift = NFI_SPARE_SIZE_LS_S;
  588. + }
  589. +
  590. + switch (page_size) {
  591. + case SZ_512:
  592. + pagesize_idx = NFI_PAGE_SIZE_512_2K;
  593. + break;
  594. + case SZ_2K:
  595. + if (snf->caps->sector_size == 512)
  596. + pagesize_idx = NFI_PAGE_SIZE_2K_4K;
  597. + else
  598. + pagesize_idx = NFI_PAGE_SIZE_512_2K;
  599. + break;
  600. + case SZ_4K:
  601. + if (snf->caps->sector_size == 512)
  602. + pagesize_idx = NFI_PAGE_SIZE_4K_8K;
  603. + else
  604. + pagesize_idx = NFI_PAGE_SIZE_2K_4K;
  605. + break;
  606. + case SZ_8K:
  607. + if (snf->caps->sector_size == 512)
  608. + pagesize_idx = NFI_PAGE_SIZE_8K_16K;
  609. + else
  610. + pagesize_idx = NFI_PAGE_SIZE_4K_8K;
  611. + break;
  612. + case SZ_16K:
  613. + pagesize_idx = NFI_PAGE_SIZE_8K_16K;
  614. + break;
  615. + default:
  616. + dev_err(snf->dev, "unsupported page size.\n");
  617. + goto err;
  618. + }
  619. +
  620. + spare_size = oob_size / nsectors;
  621. + // If we're using the 1KB sector size, HW will automatically double the
  622. + // spare size. We should only use half of the value in this case.
  623. + if (snf->caps->sector_size == 1024)
  624. + spare_size /= 2;
  625. +
  626. + for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
  627. + if (snf->caps->spare_sizes[i] <= spare_size) {
  628. + spare_size = snf->caps->spare_sizes[i];
  629. + if (snf->caps->sector_size == 1024)
  630. + spare_size *= 2;
  631. + spare_idx = i;
  632. + break;
  633. + }
  634. + }
  635. +
  636. + if (spare_idx < 0) {
  637. + dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
  638. + goto err;
  639. + }
  640. +
  641. + nfi_write32(snf, NFI_PAGEFMT,
  642. + (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
  643. + (snf->caps->fdm_size << NFI_FDM_NUM_S) |
  644. + (spare_idx << spare_size_shift) |
  645. + (pagesize_idx << NFI_PAGE_SIZE_S) |
  646. + sector_size_512);
  647. +
  648. + snf->nfi_cfg.page_size = page_size;
  649. + snf->nfi_cfg.oob_size = oob_size;
  650. + snf->nfi_cfg.nsectors = nsectors;
  651. + snf->nfi_cfg.spare_size = spare_size;
  652. +
  653. + dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
  654. + snf->caps->sector_size, spare_size, nsectors);
  655. + return snand_prepare_bouncebuf(snf, page_size + oob_size);
  656. +err:
  657. + dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
  658. + oob_size);
  659. + return -EOPNOTSUPP;
  660. +}
  661. +
  662. +static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
  663. + struct mtd_oob_region *oobecc)
  664. +{
  665. + // ECC area is not accessible
  666. + return -ERANGE;
  667. +}
  668. +
  669. +static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
  670. + struct mtd_oob_region *oobfree)
  671. +{
  672. + struct nand_device *nand = mtd_to_nanddev(mtd);
  673. + struct mtk_snand *ms = nand_to_mtk_snand(nand);
  674. +
  675. + if (section >= ms->nfi_cfg.nsectors)
  676. + return -ERANGE;
  677. +
  678. + oobfree->length = ms->caps->fdm_size - 1;
  679. + oobfree->offset = section * ms->caps->fdm_size + 1;
  680. + return 0;
  681. +}
  682. +
  683. +static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
  684. + .ecc = mtk_snand_ooblayout_ecc,
  685. + .free = mtk_snand_ooblayout_free,
  686. +};
  687. +
  688. +static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
  689. +{
  690. + struct mtk_snand *snf = nand_to_mtk_snand(nand);
  691. + struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
  692. + struct nand_ecc_props *reqs = &nand->ecc.requirements;
  693. + struct nand_ecc_props *user = &nand->ecc.user_conf;
  694. + struct mtd_info *mtd = nanddev_to_mtd(nand);
  695. + int step_size = 0, strength = 0, desired_correction = 0, steps;
  696. + bool ecc_user = false;
  697. + int ret;
  698. + u32 parity_bits, max_ecc_bytes;
  699. + struct mtk_ecc_config *ecc_cfg;
  700. +
  701. + ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
  702. + nand->memorg.oobsize);
  703. + if (ret)
  704. + return ret;
  705. +
  706. + ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
  707. + if (!ecc_cfg)
  708. + return -ENOMEM;
  709. +
  710. + nand->ecc.ctx.priv = ecc_cfg;
  711. +
  712. + if (user->step_size && user->strength) {
  713. + step_size = user->step_size;
  714. + strength = user->strength;
  715. + ecc_user = true;
  716. + } else if (reqs->step_size && reqs->strength) {
  717. + step_size = reqs->step_size;
  718. + strength = reqs->strength;
  719. + }
  720. +
  721. + if (step_size && strength) {
  722. + steps = mtd->writesize / step_size;
  723. + desired_correction = steps * strength;
  724. + strength = desired_correction / snf->nfi_cfg.nsectors;
  725. + }
  726. +
  727. + ecc_cfg->mode = ECC_NFI_MODE;
  728. + ecc_cfg->sectors = snf->nfi_cfg.nsectors;
  729. + ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
  730. +
  731. + // calculate the max possible strength under current page format
  732. + parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
  733. + max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
  734. + ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
  735. + mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
  736. +
  737. + // if there's a user requested strength, find the minimum strength that
  738. + // meets the requirement. Otherwise use the maximum strength which is
  739. + // expected by BootROM.
  740. + if (ecc_user && strength) {
  741. + u32 s_next = ecc_cfg->strength - 1;
  742. +
  743. + while (1) {
  744. + mtk_ecc_adjust_strength(snf->ecc, &s_next);
  745. + if (s_next >= ecc_cfg->strength)
  746. + break;
  747. + if (s_next < strength)
  748. + break;
  749. + s_next = ecc_cfg->strength - 1;
  750. + }
  751. + }
  752. +
  753. + mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
  754. +
  755. + conf->step_size = snf->caps->sector_size;
  756. + conf->strength = ecc_cfg->strength;
  757. +
  758. + if (ecc_cfg->strength < strength)
  759. + dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
  760. + strength);
  761. + dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
  762. + ecc_cfg->strength, snf->caps->sector_size);
  763. +
  764. + return 0;
  765. +}
  766. +
  767. +static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
  768. +{
  769. + struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
  770. +
  771. + kfree(ecc_cfg);
  772. +}
  773. +
  774. +static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
  775. + struct nand_page_io_req *req)
  776. +{
  777. + struct mtk_snand *snf = nand_to_mtk_snand(nand);
  778. + struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
  779. + int ret;
  780. +
  781. + ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
  782. + nand->memorg.oobsize);
  783. + if (ret)
  784. + return ret;
  785. + snf->autofmt = true;
  786. + snf->ecc_cfg = ecc_cfg;
  787. + return 0;
  788. +}
  789. +
  790. +static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
  791. + struct nand_page_io_req *req)
  792. +{
  793. + struct mtk_snand *snf = nand_to_mtk_snand(nand);
  794. + struct mtd_info *mtd = nanddev_to_mtd(nand);
  795. +
  796. + snf->ecc_cfg = NULL;
  797. + snf->autofmt = false;
  798. + if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
  799. + return 0;
  800. +
  801. + if (snf->ecc_stats.failed)
  802. + mtd->ecc_stats.failed += snf->ecc_stats.failed;
  803. + mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
  804. + return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
  805. +}
  806. +
  807. +static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
  808. + .init_ctx = mtk_snand_ecc_init_ctx,
  809. + .cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
  810. + .prepare_io_req = mtk_snand_ecc_prepare_io_req,
  811. + .finish_io_req = mtk_snand_ecc_finish_io_req,
  812. +};
  813. +
  814. +static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
  815. +{
  816. + u32 vall, valm;
  817. + u8 *oobptr = buf;
  818. + int i, j;
  819. +
  820. + for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
  821. + vall = nfi_read32(snf, NFI_FDML(i));
  822. + valm = nfi_read32(snf, NFI_FDMM(i));
  823. +
  824. + for (j = 0; j < snf->caps->fdm_size; j++)
  825. + oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
  826. +
  827. + oobptr += snf->caps->fdm_size;
  828. + }
  829. +}
  830. +
  831. +static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
  832. +{
  833. + u32 fdm_size = snf->caps->fdm_size;
  834. + const u8 *oobptr = buf;
  835. + u32 vall, valm;
  836. + int i, j;
  837. +
  838. + for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
  839. + vall = 0;
  840. + valm = 0;
  841. +
  842. + for (j = 0; j < 8; j++) {
  843. + if (j < 4)
  844. + vall |= (j < fdm_size ? oobptr[j] : 0xff)
  845. + << (j * 8);
  846. + else
  847. + valm |= (j < fdm_size ? oobptr[j] : 0xff)
  848. + << ((j - 4) * 8);
  849. + }
  850. +
  851. + nfi_write32(snf, NFI_FDML(i), vall);
  852. + nfi_write32(snf, NFI_FDMM(i), valm);
  853. +
  854. + oobptr += fdm_size;
  855. + }
  856. +}
  857. +
  858. +static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
  859. +{
  860. + u32 buf_bbm_pos, fdm_bbm_pos;
  861. +
  862. + if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
  863. + return;
  864. +
  865. + // swap [pagesize] byte on nand with the first fdm byte
  866. + // in the last sector.
  867. + buf_bbm_pos = snf->nfi_cfg.page_size -
  868. + (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
  869. + fdm_bbm_pos = snf->nfi_cfg.page_size +
  870. + (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
  871. +
  872. + swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
  873. +}
  874. +
  875. +static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
  876. +{
  877. + u32 fdm_bbm_pos1, fdm_bbm_pos2;
  878. +
  879. + if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
  880. + return;
  881. +
  882. + // swap the first fdm byte in the first and the last sector.
  883. + fdm_bbm_pos1 = snf->nfi_cfg.page_size;
  884. + fdm_bbm_pos2 = snf->nfi_cfg.page_size +
  885. + (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
  886. + swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
  887. +}
  888. +
  889. +static int mtk_snand_read_page_cache(struct mtk_snand *snf,
  890. + const struct spi_mem_op *op)
  891. +{
  892. + u8 *buf = snf->buf;
  893. + u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
  894. + // the address part to be sent by the controller
  895. + u32 op_addr = op->addr.val;
  896. + // where to start copying data from bounce buffer
  897. + u32 rd_offset = 0;
  898. + u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
  899. + u32 op_mode = 0;
  900. + u32 dma_len = snf->buf_len;
  901. + int ret = 0;
  902. + u32 rd_mode, rd_bytes, val;
  903. + dma_addr_t buf_dma;
  904. +
  905. + if (snf->autofmt) {
  906. + u32 last_bit;
  907. + u32 mask;
  908. +
  909. + dma_len = snf->nfi_cfg.page_size;
  910. + op_mode = CNFG_AUTO_FMT_EN;
  911. + if (op->data.ecc)
  912. + op_mode |= CNFG_HW_ECC_EN;
  913. + // extract the plane bit:
  914. + // Find the highest bit set in (pagesize+oobsize).
  915. + // Bits higher than that in op->addr are kept and sent over SPI
  916. + // Lower bits are used as an offset for copying data from DMA
  917. + // bounce buffer.
  918. + last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
  919. + mask = (1 << last_bit) - 1;
  920. + rd_offset = op_addr & mask;
  921. + op_addr &= ~mask;
  922. +
  923. + // check if we can dma to the caller memory
  924. + if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
  925. + buf = op->data.buf.in;
  926. + }
  927. + mtk_snand_mac_reset(snf);
  928. + mtk_nfi_reset(snf);
  929. +
  930. + // command and dummy cycles
  931. + nfi_write32(snf, SNF_RD_CTL2,
  932. + (dummy_clk << DATA_READ_DUMMY_S) |
  933. + (op->cmd.opcode << DATA_READ_CMD_S));
  934. +
  935. + // read address
  936. + nfi_write32(snf, SNF_RD_CTL3, op_addr);
  937. +
  938. + // Set read op_mode
  939. + if (op->data.buswidth == 4)
  940. + rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
  941. + DATA_READ_MODE_X4;
  942. + else if (op->data.buswidth == 2)
  943. + rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
  944. + DATA_READ_MODE_X2;
  945. + else
  946. + rd_mode = DATA_READ_MODE_X1;
  947. + rd_mode <<= DATA_READ_MODE_S;
  948. + nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
  949. + rd_mode | DATARD_CUSTOM_EN);
  950. +
  951. + // Set bytes to read
  952. + rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
  953. + snf->nfi_cfg.nsectors;
  954. + nfi_write32(snf, SNF_MISC_CTL2,
  955. + (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
  956. +
  957. + // NFI read prepare
  958. + nfi_write16(snf, NFI_CNFG,
  959. + (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
  960. + CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
  961. +
  962. + nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
  963. +
  964. + buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
  965. + if (dma_mapping_error(snf->dev, buf_dma)) {
  966. + dev_err(snf->dev, "DMA mapping failed.\n");
  967. + goto cleanup;
  968. + }
  969. + nfi_write32(snf, NFI_STRADDR, buf_dma);
  970. + if (op->data.ecc) {
  971. + snf->ecc_cfg->op = ECC_DECODE;
  972. + ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
  973. + if (ret)
  974. + goto cleanup_dma;
  975. + }
  976. + // Prepare for custom read interrupt
  977. + nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
  978. + reinit_completion(&snf->op_done);
  979. +
  980. + // Trigger NFI into custom mode
  981. + nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
  982. +
  983. + // Start DMA read
  984. + nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
  985. + nfi_write16(snf, NFI_STRDATA, STR_DATA);
  986. +
  987. + if (!wait_for_completion_timeout(
  988. + &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
  989. + dev_err(snf->dev, "DMA timed out for reading from cache.\n");
  990. + ret = -ETIMEDOUT;
  991. + goto cleanup;
  992. + }
  993. +
  994. + // Wait for BUS_SEC_CNTR returning expected value
  995. + ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
  996. + BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
  997. + SNFI_POLL_INTERVAL);
  998. + if (ret) {
  999. + dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
  1000. + goto cleanup2;
  1001. + }
  1002. +
  1003. + // Wait for bus becoming idle
  1004. + ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
  1005. + !(val & snf->caps->mastersta_mask), 0,
  1006. + SNFI_POLL_INTERVAL);
  1007. + if (ret) {
  1008. + dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
  1009. + goto cleanup2;
  1010. + }
  1011. +
  1012. + if (op->data.ecc) {
  1013. + ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
  1014. + if (ret) {
  1015. + dev_err(snf->dev, "wait ecc done timeout\n");
  1016. + goto cleanup2;
  1017. + }
  1018. + // save status before disabling ecc
  1019. + mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
  1020. + snf->nfi_cfg.nsectors);
  1021. + }
  1022. +
  1023. + dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
  1024. +
  1025. + if (snf->autofmt) {
  1026. + mtk_snand_read_fdm(snf, buf_fdm);
  1027. + if (snf->caps->bbm_swap) {
  1028. + mtk_snand_bm_swap(snf, buf);
  1029. + mtk_snand_fdm_bm_swap(snf);
  1030. + }
  1031. + }
  1032. +
  1033. + // copy data back
  1034. + if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
  1035. + memset(op->data.buf.in, 0xff, op->data.nbytes);
  1036. + snf->ecc_stats.bitflips = 0;
  1037. + snf->ecc_stats.failed = 0;
  1038. + snf->ecc_stats.corrected = 0;
  1039. + } else {
  1040. + if (buf == op->data.buf.in) {
  1041. + u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
  1042. + u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
  1043. +
  1044. + if (req_left)
  1045. + memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
  1046. + buf_fdm,
  1047. + cap_len < req_left ? cap_len : req_left);
  1048. + } else if (rd_offset < snf->buf_len) {
  1049. + u32 cap_len = snf->buf_len - rd_offset;
  1050. +
  1051. + if (op->data.nbytes < cap_len)
  1052. + cap_len = op->data.nbytes;
  1053. + memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
  1054. + }
  1055. + }
  1056. +cleanup2:
  1057. + if (op->data.ecc)
  1058. + mtk_ecc_disable(snf->ecc);
  1059. +cleanup_dma:
  1060. + // unmap dma only if any error happens. (otherwise it's done before
  1061. + // data copying)
  1062. + if (ret)
  1063. + dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
  1064. +cleanup:
  1065. + // Stop read
  1066. + nfi_write32(snf, NFI_CON, 0);
  1067. + nfi_write16(snf, NFI_CNFG, 0);
  1068. +
  1069. + // Clear SNF done flag
  1070. + nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
  1071. + nfi_write32(snf, SNF_STA_CTL1, 0);
  1072. +
  1073. + // Disable interrupt
  1074. + nfi_read32(snf, NFI_INTR_STA);
  1075. + nfi_write32(snf, NFI_INTR_EN, 0);
  1076. +
  1077. + nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
  1078. + return ret;
  1079. +}
  1080. +
  1081. +static int mtk_snand_write_page_cache(struct mtk_snand *snf,
  1082. + const struct spi_mem_op *op)
  1083. +{
  1084. + // the address part to be sent by the controller
  1085. + u32 op_addr = op->addr.val;
  1086. + // where to start copying data from bounce buffer
  1087. + u32 wr_offset = 0;
  1088. + u32 op_mode = 0;
  1089. + int ret = 0;
  1090. + u32 wr_mode = 0;
  1091. + u32 dma_len = snf->buf_len;
  1092. + u32 wr_bytes, val;
  1093. + size_t cap_len;
  1094. + dma_addr_t buf_dma;
  1095. +
  1096. + if (snf->autofmt) {
  1097. + u32 last_bit;
  1098. + u32 mask;
  1099. +
  1100. + dma_len = snf->nfi_cfg.page_size;
  1101. + op_mode = CNFG_AUTO_FMT_EN;
  1102. + if (op->data.ecc)
  1103. + op_mode |= CNFG_HW_ECC_EN;
  1104. +
  1105. + last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
  1106. + mask = (1 << last_bit) - 1;
  1107. + wr_offset = op_addr & mask;
  1108. + op_addr &= ~mask;
  1109. + }
  1110. + mtk_snand_mac_reset(snf);
  1111. + mtk_nfi_reset(snf);
  1112. +
  1113. + if (wr_offset)
  1114. + memset(snf->buf, 0xff, wr_offset);
  1115. +
  1116. + cap_len = snf->buf_len - wr_offset;
  1117. + if (op->data.nbytes < cap_len)
  1118. + cap_len = op->data.nbytes;
  1119. + memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
  1120. + if (snf->autofmt) {
  1121. + if (snf->caps->bbm_swap) {
  1122. + mtk_snand_fdm_bm_swap(snf);
  1123. + mtk_snand_bm_swap(snf, snf->buf);
  1124. + }
  1125. + mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
  1126. + }
  1127. +
  1128. + // Command
  1129. + nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
  1130. +
  1131. + // write address
  1132. + nfi_write32(snf, SNF_PG_CTL2, op_addr);
  1133. +
  1134. + // Set read op_mode
  1135. + if (op->data.buswidth == 4)
  1136. + wr_mode = PG_LOAD_X4_EN;
  1137. +
  1138. + nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
  1139. + wr_mode | PG_LOAD_CUSTOM_EN);
  1140. +
  1141. + // Set bytes to write
  1142. + wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
  1143. + snf->nfi_cfg.nsectors;
  1144. + nfi_write32(snf, SNF_MISC_CTL2,
  1145. + (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
  1146. +
  1147. + // NFI write prepare
  1148. + nfi_write16(snf, NFI_CNFG,
  1149. + (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
  1150. + CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
  1151. +
  1152. + nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
  1153. + buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
  1154. + if (dma_mapping_error(snf->dev, buf_dma)) {
  1155. + dev_err(snf->dev, "DMA mapping failed.\n");
  1156. + goto cleanup;
  1157. + }
  1158. + nfi_write32(snf, NFI_STRADDR, buf_dma);
  1159. + if (op->data.ecc) {
  1160. + snf->ecc_cfg->op = ECC_ENCODE;
  1161. + ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
  1162. + if (ret)
  1163. + goto cleanup_dma;
  1164. + }
  1165. + // Prepare for custom write interrupt
  1166. + nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
  1167. + reinit_completion(&snf->op_done);
  1168. + ;
  1169. +
  1170. + // Trigger NFI into custom mode
  1171. + nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
  1172. +
  1173. + // Start DMA write
  1174. + nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
  1175. + nfi_write16(snf, NFI_STRDATA, STR_DATA);
  1176. +
  1177. + if (!wait_for_completion_timeout(
  1178. + &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
  1179. + dev_err(snf->dev, "DMA timed out for program load.\n");
  1180. + ret = -ETIMEDOUT;
  1181. + goto cleanup_ecc;
  1182. + }
  1183. +
  1184. + // Wait for NFI_SEC_CNTR returning expected value
  1185. + ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
  1186. + NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
  1187. + SNFI_POLL_INTERVAL);
  1188. + if (ret)
  1189. + dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
  1190. +
  1191. +cleanup_ecc:
  1192. + if (op->data.ecc)
  1193. + mtk_ecc_disable(snf->ecc);
  1194. +cleanup_dma:
  1195. + dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
  1196. +cleanup:
  1197. + // Stop write
  1198. + nfi_write32(snf, NFI_CON, 0);
  1199. + nfi_write16(snf, NFI_CNFG, 0);
  1200. +
  1201. + // Clear SNF done flag
  1202. + nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
  1203. + nfi_write32(snf, SNF_STA_CTL1, 0);
  1204. +
  1205. + // Disable interrupt
  1206. + nfi_read32(snf, NFI_INTR_STA);
  1207. + nfi_write32(snf, NFI_INTR_EN, 0);
  1208. +
  1209. + nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
  1210. +
  1211. + return ret;
  1212. +}
  1213. +
  1214. +/**
  1215. + * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
  1216. + * @op spi-mem op to check
  1217. + *
  1218. + * Check whether op can be executed with read_from_cache or program_load
  1219. + * mode in the controller.
  1220. + * This controller can execute typical Read From Cache and Program Load
  1221. + * instructions found on SPI-NAND with 2-byte address.
  1222. + * DTR and cmd buswidth & nbytes should be checked before calling this.
  1223. + *
  1224. + * Return: true if the op matches the instruction template
  1225. + */
  1226. +static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
  1227. +{
  1228. + if (op->addr.nbytes != 2)
  1229. + return false;
  1230. +
  1231. + if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
  1232. + op->addr.buswidth != 4)
  1233. + return false;
  1234. +
  1235. + // match read from page instructions
  1236. + if (op->data.dir == SPI_MEM_DATA_IN) {
  1237. + // check dummy cycle first
  1238. + if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
  1239. + DATA_READ_MAX_DUMMY)
  1240. + return false;
  1241. + // quad io / quad out
  1242. + if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
  1243. + op->data.buswidth == 4)
  1244. + return true;
  1245. +
  1246. + // dual io / dual out
  1247. + if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
  1248. + op->data.buswidth == 2)
  1249. + return true;
  1250. +
  1251. + // standard spi
  1252. + if (op->addr.buswidth == 1 && op->data.buswidth == 1)
  1253. + return true;
  1254. + } else if (op->data.dir == SPI_MEM_DATA_OUT) {
  1255. + // check dummy cycle first
  1256. + if (op->dummy.nbytes)
  1257. + return false;
  1258. + // program load quad out
  1259. + if (op->addr.buswidth == 1 && op->data.buswidth == 4)
  1260. + return true;
  1261. + // standard spi
  1262. + if (op->addr.buswidth == 1 && op->data.buswidth == 1)
  1263. + return true;
  1264. + }
  1265. + return false;
  1266. +}
  1267. +
  1268. +static bool mtk_snand_supports_op(struct spi_mem *mem,
  1269. + const struct spi_mem_op *op)
  1270. +{
  1271. + if (!spi_mem_default_supports_op(mem, op))
  1272. + return false;
  1273. + if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
  1274. + return false;
  1275. + if (mtk_snand_is_page_ops(op))
  1276. + return true;
  1277. + return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
  1278. + (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
  1279. + (op->data.nbytes == 0 || op->data.buswidth == 1));
  1280. +}
  1281. +
  1282. +static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
  1283. +{
  1284. + struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
  1285. + // page ops transfer size must be exactly ((sector_size + spare_size) *
  1286. + // nsectors). Limit the op size if the caller requests more than that.
  1287. + // exec_op will read more than needed and discard the leftover if the
  1288. + // caller requests less data.
  1289. + if (mtk_snand_is_page_ops(op)) {
  1290. + size_t l;
  1291. + // skip adjust_op_size for page ops
  1292. + if (ms->autofmt)
  1293. + return 0;
  1294. + l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
  1295. + l *= ms->nfi_cfg.nsectors;
  1296. + if (op->data.nbytes > l)
  1297. + op->data.nbytes = l;
  1298. + } else {
  1299. + size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
  1300. +
  1301. + if (hl >= SNF_GPRAM_SIZE)
  1302. + return -EOPNOTSUPP;
  1303. + if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
  1304. + op->data.nbytes = SNF_GPRAM_SIZE - hl;
  1305. + }
  1306. + return 0;
  1307. +}
  1308. +
  1309. +static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
  1310. +{
  1311. + struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
  1312. +
  1313. + dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
  1314. + op->addr.val, op->addr.buswidth, op->addr.nbytes,
  1315. + op->data.buswidth, op->data.nbytes);
  1316. + if (mtk_snand_is_page_ops(op)) {
  1317. + if (op->data.dir == SPI_MEM_DATA_IN)
  1318. + return mtk_snand_read_page_cache(ms, op);
  1319. + else
  1320. + return mtk_snand_write_page_cache(ms, op);
  1321. + } else {
  1322. + return mtk_snand_mac_io(ms, op);
  1323. + }
  1324. +}
  1325. +
  1326. +static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
  1327. + .adjust_op_size = mtk_snand_adjust_op_size,
  1328. + .supports_op = mtk_snand_supports_op,
  1329. + .exec_op = mtk_snand_exec_op,
  1330. +};
  1331. +
  1332. +static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
  1333. + .ecc = true,
  1334. +};
  1335. +
  1336. +static irqreturn_t mtk_snand_irq(int irq, void *id)
  1337. +{
  1338. + struct mtk_snand *snf = id;
  1339. + u32 sta, ien;
  1340. +
  1341. + sta = nfi_read32(snf, NFI_INTR_STA);
  1342. + ien = nfi_read32(snf, NFI_INTR_EN);
  1343. +
  1344. + if (!(sta & ien))
  1345. + return IRQ_NONE;
  1346. +
  1347. + nfi_write32(snf, NFI_INTR_EN, 0);
  1348. + complete(&snf->op_done);
  1349. + return IRQ_HANDLED;
  1350. +}
  1351. +
  1352. +static const struct of_device_id mtk_snand_ids[] = {
  1353. + { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
  1354. + { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
  1355. + {},
  1356. +};
  1357. +
  1358. +MODULE_DEVICE_TABLE(of, mtk_snand_ids);
  1359. +
  1360. +static int mtk_snand_enable_clk(struct mtk_snand *ms)
  1361. +{
  1362. + int ret;
  1363. +
  1364. + ret = clk_prepare_enable(ms->nfi_clk);
  1365. + if (ret) {
  1366. + dev_err(ms->dev, "unable to enable nfi clk\n");
  1367. + return ret;
  1368. + }
  1369. + ret = clk_prepare_enable(ms->pad_clk);
  1370. + if (ret) {
  1371. + dev_err(ms->dev, "unable to enable pad clk\n");
  1372. + goto err1;
  1373. + }
  1374. + return 0;
  1375. +err1:
  1376. + clk_disable_unprepare(ms->nfi_clk);
  1377. + return ret;
  1378. +}
  1379. +
  1380. +static void mtk_snand_disable_clk(struct mtk_snand *ms)
  1381. +{
  1382. + clk_disable_unprepare(ms->pad_clk);
  1383. + clk_disable_unprepare(ms->nfi_clk);
  1384. +}
  1385. +
  1386. +static int mtk_snand_probe(struct platform_device *pdev)
  1387. +{
  1388. + struct device_node *np = pdev->dev.of_node;
  1389. + const struct of_device_id *dev_id;
  1390. + struct spi_controller *ctlr;
  1391. + struct mtk_snand *ms;
  1392. + int ret;
  1393. +
  1394. + dev_id = of_match_node(mtk_snand_ids, np);
  1395. + if (!dev_id)
  1396. + return -EINVAL;
  1397. +
  1398. + ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
  1399. + if (!ctlr)
  1400. + return -ENOMEM;
  1401. + platform_set_drvdata(pdev, ctlr);
  1402. +
  1403. + ms = spi_controller_get_devdata(ctlr);
  1404. +
  1405. + ms->ctlr = ctlr;
  1406. + ms->caps = dev_id->data;
  1407. +
  1408. + ms->ecc = of_mtk_ecc_get(np);
  1409. + if (IS_ERR(ms->ecc))
  1410. + return PTR_ERR(ms->ecc);
  1411. + else if (!ms->ecc)
  1412. + return -ENODEV;
  1413. +
  1414. + ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
  1415. + if (IS_ERR(ms->nfi_base)) {
  1416. + ret = PTR_ERR(ms->nfi_base);
  1417. + goto release_ecc;
  1418. + }
  1419. +
  1420. + ms->dev = &pdev->dev;
  1421. +
  1422. + ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
  1423. + if (IS_ERR(ms->nfi_clk)) {
  1424. + ret = PTR_ERR(ms->nfi_clk);
  1425. + dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
  1426. + goto release_ecc;
  1427. + }
  1428. +
  1429. + ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
  1430. + if (IS_ERR(ms->pad_clk)) {
  1431. + ret = PTR_ERR(ms->pad_clk);
  1432. + dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
  1433. + goto release_ecc;
  1434. + }
  1435. +
  1436. + ret = mtk_snand_enable_clk(ms);
  1437. + if (ret)
  1438. + goto release_ecc;
  1439. +
  1440. + init_completion(&ms->op_done);
  1441. +
  1442. + ms->irq = platform_get_irq(pdev, 0);
  1443. + if (ms->irq < 0) {
  1444. + ret = ms->irq;
  1445. + goto disable_clk;
  1446. + }
  1447. + ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
  1448. + "mtk-snand", ms);
  1449. + if (ret) {
  1450. + dev_err(ms->dev, "failed to request snfi irq\n");
  1451. + goto disable_clk;
  1452. + }
  1453. +
  1454. + ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
  1455. + if (ret) {
  1456. + dev_err(ms->dev, "failed to set dma mask\n");
  1457. + goto disable_clk;
  1458. + }
  1459. +
  1460. + // switch to SNFI mode
  1461. + nfi_write32(ms, SNF_CFG, SPI_MODE);
  1462. +
  1463. + // setup an initial page format for ops matching page_cache_op template
  1464. + // before ECC is called.
  1465. + ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size,
  1466. + ms->caps->spare_sizes[0]);
  1467. + if (ret) {
  1468. + dev_err(ms->dev, "failed to set initial page format\n");
  1469. + goto disable_clk;
  1470. + }
  1471. +
  1472. + // setup ECC engine
  1473. + ms->ecc_eng.dev = &pdev->dev;
  1474. + ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
  1475. + ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
  1476. + ms->ecc_eng.priv = ms;
  1477. +
  1478. + ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
  1479. + if (ret) {
  1480. + dev_err(&pdev->dev, "failed to register ecc engine.\n");
  1481. + goto disable_clk;
  1482. + }
  1483. +
  1484. + ctlr->num_chipselect = 1;
  1485. + ctlr->mem_ops = &mtk_snand_mem_ops;
  1486. + ctlr->mem_caps = &mtk_snand_mem_caps;
  1487. + ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
  1488. + ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
  1489. + ctlr->dev.of_node = pdev->dev.of_node;
  1490. + ret = spi_register_controller(ctlr);
  1491. + if (ret) {
  1492. + dev_err(&pdev->dev, "spi_register_controller failed.\n");
  1493. + goto disable_clk;
  1494. + }
  1495. +
  1496. + return 0;
  1497. +disable_clk:
  1498. + mtk_snand_disable_clk(ms);
  1499. +release_ecc:
  1500. + mtk_ecc_release(ms->ecc);
  1501. + return ret;
  1502. +}
  1503. +
  1504. +static int mtk_snand_remove(struct platform_device *pdev)
  1505. +{
  1506. + struct spi_controller *ctlr = platform_get_drvdata(pdev);
  1507. + struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
  1508. +
  1509. + spi_unregister_controller(ctlr);
  1510. + mtk_snand_disable_clk(ms);
  1511. + mtk_ecc_release(ms->ecc);
  1512. + kfree(ms->buf);
  1513. + return 0;
  1514. +}
  1515. +
  1516. +static struct platform_driver mtk_snand_driver = {
  1517. + .probe = mtk_snand_probe,
  1518. + .remove = mtk_snand_remove,
  1519. + .driver = {
  1520. + .name = "mtk-snand",
  1521. + .of_match_table = mtk_snand_ids,
  1522. + },
  1523. +};
  1524. +
  1525. +module_platform_driver(mtk_snand_driver);
  1526. +
  1527. +MODULE_LICENSE("GPL");
  1528. +MODULE_AUTHOR("Chuanhong Guo <[email protected]>");
  1529. +MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");