mtdsplit_bcm_wfi.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. /*
  2. * MTD split for Broadcom Whole Flash Image
  3. *
  4. * Copyright (C) 2020 Álvaro Fernández Rojas <[email protected]>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. */
  11. #define je16_to_cpu(x) ((x).v16)
  12. #define je32_to_cpu(x) ((x).v32)
  13. #include <linux/crc32.h>
  14. #include <linux/init.h>
  15. #include <linux/jffs2.h>
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/slab.h>
  19. #include <linux/byteorder/generic.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/mtd/partitions.h>
  22. #include "mtdsplit.h"
  23. #define char_to_num(c) ((c >= '0' && c <= '9') ? (c - '0') : (0))
  24. #define BCM_WFI_PARTS 3
  25. #define BCM_WFI_SPLIT_PARTS 2
  26. #define CFERAM_NAME "cferam"
  27. #define CFERAM_NAME_LEN (sizeof(CFERAM_NAME) - 1)
  28. #define CFERAM_NAME_MAX_LEN 32
  29. #define KERNEL_NAME "vmlinux.lz"
  30. #define KERNEL_NAME_LEN (sizeof(KERNEL_NAME) - 1)
  31. #define OPENWRT_NAME "1-openwrt"
  32. #define OPENWRT_NAME_LEN (sizeof(OPENWRT_NAME) - 1)
  33. #define UBI_MAGIC 0x55424923
  34. #define CFE_MAGIC_PFX "cferam."
  35. #define CFE_MAGIC_PFX_LEN (sizeof(CFE_MAGIC_PFX) - 1)
  36. #define CFE_MAGIC "cferam.000"
  37. #define CFE_MAGIC_LEN (sizeof(CFE_MAGIC) - 1)
  38. #define SERCOMM_MAGIC_PFX "eRcOmM."
  39. #define SERCOMM_MAGIC_PFX_LEN (sizeof(SERCOMM_MAGIC_PFX) - 1)
  40. #define SERCOMM_MAGIC "eRcOmM.000"
  41. #define SERCOMM_MAGIC_LEN (sizeof(SERCOMM_MAGIC) - 1)
  42. #define PART_CFERAM "cferam"
  43. #define PART_FIRMWARE "firmware"
  44. #define PART_IMAGE_1 "img1"
  45. #define PART_IMAGE_2 "img2"
  46. static u32 jffs2_dirent_crc(struct jffs2_raw_dirent *node)
  47. {
  48. return crc32(0, node, sizeof(struct jffs2_raw_dirent) - 8);
  49. }
  50. static bool jffs2_dirent_valid(struct jffs2_raw_dirent *node)
  51. {
  52. return ((je16_to_cpu(node->magic) == JFFS2_MAGIC_BITMASK) &&
  53. (je16_to_cpu(node->nodetype) == JFFS2_NODETYPE_DIRENT) &&
  54. je32_to_cpu(node->ino) &&
  55. je32_to_cpu(node->node_crc) == jffs2_dirent_crc(node));
  56. }
  57. static int jffs2_find_file(struct mtd_info *mtd, uint8_t *buf,
  58. const char *name, size_t name_len,
  59. loff_t *offs, loff_t size,
  60. char **out_name, size_t *out_name_len)
  61. {
  62. const loff_t end = *offs + size;
  63. struct jffs2_raw_dirent *node;
  64. bool valid = false;
  65. size_t retlen;
  66. uint16_t magic;
  67. int rc;
  68. for (; *offs < end; *offs += mtd->erasesize) {
  69. unsigned int block_offs = 0;
  70. /* Skip CFE erased blocks */
  71. rc = mtd_read(mtd, *offs, sizeof(magic), &retlen,
  72. (void *) &magic);
  73. if (rc || retlen != sizeof(magic)) {
  74. continue;
  75. }
  76. /* Skip blocks not starting with JFFS2 magic */
  77. if (magic != JFFS2_MAGIC_BITMASK)
  78. continue;
  79. /* Read full block */
  80. rc = mtd_read(mtd, *offs, mtd->erasesize, &retlen,
  81. (void *) buf);
  82. if (rc)
  83. return rc;
  84. if (retlen != mtd->erasesize)
  85. return -EINVAL;
  86. while (block_offs < mtd->erasesize) {
  87. node = (struct jffs2_raw_dirent *) &buf[block_offs];
  88. if (!jffs2_dirent_valid(node)) {
  89. block_offs += 4;
  90. continue;
  91. }
  92. if (!memcmp(node->name, OPENWRT_NAME,
  93. OPENWRT_NAME_LEN)) {
  94. valid = true;
  95. } else if (!memcmp(node->name, name, name_len)) {
  96. if (!valid)
  97. return -EINVAL;
  98. if (out_name)
  99. *out_name = kstrndup(node->name,
  100. node->nsize,
  101. GFP_KERNEL);
  102. if (out_name_len)
  103. *out_name_len = node->nsize;
  104. return 0;
  105. }
  106. block_offs += je32_to_cpu(node->totlen);
  107. block_offs = (block_offs + 0x3) & ~0x3;
  108. }
  109. }
  110. return -ENOENT;
  111. }
  112. static int ubifs_find(struct mtd_info *mtd, loff_t *offs, loff_t size)
  113. {
  114. const loff_t end = *offs + size;
  115. uint32_t magic;
  116. size_t retlen;
  117. int rc;
  118. for (; *offs < end; *offs += mtd->erasesize) {
  119. rc = mtd_read(mtd, *offs, sizeof(magic), &retlen,
  120. (unsigned char *) &magic);
  121. if (rc || retlen != sizeof(magic))
  122. continue;
  123. if (be32_to_cpu(magic) == UBI_MAGIC)
  124. return 0;
  125. }
  126. return -ENOENT;
  127. }
  128. static int parse_bcm_wfi(struct mtd_info *master,
  129. const struct mtd_partition **pparts,
  130. uint8_t *buf, loff_t off, loff_t size, bool cfe_part)
  131. {
  132. struct device_node *mtd_node;
  133. struct mtd_partition *parts;
  134. loff_t cfe_off, kernel_off, rootfs_off;
  135. unsigned int num_parts = BCM_WFI_PARTS, cur_part = 0;
  136. const char *cferam_name = CFERAM_NAME;
  137. size_t cferam_name_len;
  138. int ret;
  139. mtd_node = mtd_get_of_node(master);
  140. if (mtd_node)
  141. of_property_read_string(mtd_node, "brcm,cferam", &cferam_name);
  142. cferam_name_len = strnlen(cferam_name, CFERAM_NAME_MAX_LEN);
  143. if (cferam_name_len > 0)
  144. cferam_name_len--;
  145. if (cfe_part) {
  146. num_parts++;
  147. cfe_off = off;
  148. ret = jffs2_find_file(master, buf, cferam_name,
  149. cferam_name_len, &cfe_off,
  150. size - (cfe_off - off), NULL, NULL);
  151. if (ret)
  152. return ret;
  153. kernel_off = cfe_off + master->erasesize;
  154. } else {
  155. kernel_off = off;
  156. }
  157. ret = jffs2_find_file(master, buf, KERNEL_NAME, KERNEL_NAME_LEN,
  158. &kernel_off, size - (kernel_off - off),
  159. NULL, NULL);
  160. if (ret)
  161. return ret;
  162. rootfs_off = kernel_off + master->erasesize;
  163. ret = ubifs_find(master, &rootfs_off, size - (rootfs_off - off));
  164. if (ret)
  165. return ret;
  166. parts = kzalloc(num_parts * sizeof(*parts), GFP_KERNEL);
  167. if (!parts)
  168. return -ENOMEM;
  169. if (cfe_part) {
  170. parts[cur_part].name = PART_CFERAM;
  171. parts[cur_part].mask_flags = MTD_WRITEABLE;
  172. parts[cur_part].offset = cfe_off;
  173. parts[cur_part].size = kernel_off - cfe_off;
  174. cur_part++;
  175. }
  176. parts[cur_part].name = PART_FIRMWARE;
  177. parts[cur_part].offset = kernel_off;
  178. parts[cur_part].size = size - (kernel_off - off);
  179. cur_part++;
  180. parts[cur_part].name = KERNEL_PART_NAME;
  181. parts[cur_part].offset = kernel_off;
  182. parts[cur_part].size = rootfs_off - kernel_off;
  183. cur_part++;
  184. parts[cur_part].name = UBI_PART_NAME;
  185. parts[cur_part].offset = rootfs_off;
  186. parts[cur_part].size = size - (rootfs_off - off);
  187. cur_part++;
  188. *pparts = parts;
  189. return num_parts;
  190. }
  191. static int mtdsplit_parse_bcm_wfi(struct mtd_info *master,
  192. const struct mtd_partition **pparts,
  193. struct mtd_part_parser_data *data)
  194. {
  195. struct device_node *mtd_node;
  196. bool cfe_part = true;
  197. uint8_t *buf;
  198. int ret;
  199. mtd_node = mtd_get_of_node(master);
  200. if (!mtd_node)
  201. return -EINVAL;
  202. buf = kzalloc(master->erasesize, GFP_KERNEL);
  203. if (!buf)
  204. return -ENOMEM;
  205. if (of_property_read_bool(mtd_node, "brcm,no-cferam"))
  206. cfe_part = false;
  207. ret = parse_bcm_wfi(master, pparts, buf, 0, master->size, cfe_part);
  208. kfree(buf);
  209. return ret;
  210. }
  211. static const struct of_device_id mtdsplit_bcm_wfi_of_match[] = {
  212. { .compatible = "brcm,wfi" },
  213. { },
  214. };
  215. static struct mtd_part_parser mtdsplit_bcm_wfi_parser = {
  216. .owner = THIS_MODULE,
  217. .name = "bcm-wfi-fw",
  218. .of_match_table = mtdsplit_bcm_wfi_of_match,
  219. .parse_fn = mtdsplit_parse_bcm_wfi,
  220. .type = MTD_PARSER_TYPE_FIRMWARE,
  221. };
  222. static int cferam_bootflag_value(const char *name, size_t name_len)
  223. {
  224. int rc = -ENOENT;
  225. if (name &&
  226. (name_len >= CFE_MAGIC_LEN) &&
  227. !memcmp(name, CFE_MAGIC_PFX, CFE_MAGIC_PFX_LEN)) {
  228. rc = char_to_num(name[CFE_MAGIC_PFX_LEN + 0]) * 100;
  229. rc += char_to_num(name[CFE_MAGIC_PFX_LEN + 1]) * 10;
  230. rc += char_to_num(name[CFE_MAGIC_PFX_LEN + 2]) * 1;
  231. }
  232. return rc;
  233. }
  234. static int mtdsplit_parse_bcm_wfi_split(struct mtd_info *master,
  235. const struct mtd_partition **pparts,
  236. struct mtd_part_parser_data *data)
  237. {
  238. struct mtd_partition *parts;
  239. loff_t cfe_off;
  240. loff_t img1_off = 0;
  241. loff_t img2_off = master->size / 2;
  242. loff_t img1_size = (img2_off - img1_off);
  243. loff_t img2_size = (master->size - img2_off);
  244. loff_t active_off, inactive_off;
  245. loff_t active_size, inactive_size;
  246. const char *inactive_name;
  247. uint8_t *buf;
  248. char *cfe1_name = NULL, *cfe2_name = NULL;
  249. size_t cfe1_size = 0, cfe2_size = 0;
  250. int ret;
  251. int bf1, bf2;
  252. buf = kzalloc(master->erasesize, GFP_KERNEL);
  253. if (!buf)
  254. return -ENOMEM;
  255. cfe_off = img1_off;
  256. ret = jffs2_find_file(master, buf, CFERAM_NAME, CFERAM_NAME_LEN,
  257. &cfe_off, img1_size, &cfe1_name, &cfe1_size);
  258. cfe_off = img2_off;
  259. ret = jffs2_find_file(master, buf, CFERAM_NAME, CFERAM_NAME_LEN,
  260. &cfe_off, img2_size, &cfe2_name, &cfe2_size);
  261. bf1 = cferam_bootflag_value(cfe1_name, cfe1_size);
  262. if (bf1 >= 0)
  263. printk("cferam: bootflag1=%d\n", bf1);
  264. bf2 = cferam_bootflag_value(cfe2_name, cfe2_size);
  265. if (bf2 >= 0)
  266. printk("cferam: bootflag2=%d\n", bf2);
  267. kfree(cfe1_name);
  268. kfree(cfe2_name);
  269. if (bf1 >= bf2) {
  270. active_off = img1_off;
  271. active_size = img1_size;
  272. inactive_off = img2_off;
  273. inactive_size = img2_size;
  274. inactive_name = PART_IMAGE_2;
  275. } else {
  276. active_off = img2_off;
  277. active_size = img2_size;
  278. inactive_off = img1_off;
  279. inactive_size = img1_size;
  280. inactive_name = PART_IMAGE_1;
  281. }
  282. ret = parse_bcm_wfi(master, pparts, buf, active_off, active_size, true);
  283. kfree(buf);
  284. if (ret > 0) {
  285. parts = kzalloc((ret + 1) * sizeof(*parts), GFP_KERNEL);
  286. if (!parts)
  287. return -ENOMEM;
  288. memcpy(parts, *pparts, ret * sizeof(*parts));
  289. kfree(*pparts);
  290. parts[ret].name = inactive_name;
  291. parts[ret].offset = inactive_off;
  292. parts[ret].size = inactive_size;
  293. ret++;
  294. *pparts = parts;
  295. } else {
  296. parts = kzalloc(BCM_WFI_SPLIT_PARTS * sizeof(*parts), GFP_KERNEL);
  297. parts[0].name = PART_IMAGE_1;
  298. parts[0].offset = img1_off;
  299. parts[0].size = img1_size;
  300. parts[1].name = PART_IMAGE_2;
  301. parts[1].offset = img2_off;
  302. parts[1].size = img2_size;
  303. *pparts = parts;
  304. }
  305. return ret;
  306. }
  307. static const struct of_device_id mtdsplit_bcm_wfi_split_of_match[] = {
  308. { .compatible = "brcm,wfi-split" },
  309. { },
  310. };
  311. static struct mtd_part_parser mtdsplit_bcm_wfi_split_parser = {
  312. .owner = THIS_MODULE,
  313. .name = "bcm-wfi-split-fw",
  314. .of_match_table = mtdsplit_bcm_wfi_split_of_match,
  315. .parse_fn = mtdsplit_parse_bcm_wfi_split,
  316. .type = MTD_PARSER_TYPE_FIRMWARE,
  317. };
  318. static int sercomm_bootflag_value(struct mtd_info *mtd, uint8_t *buf)
  319. {
  320. size_t retlen;
  321. loff_t offs;
  322. int rc;
  323. for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
  324. rc = mtd_read(mtd, offs, SERCOMM_MAGIC_LEN, &retlen, buf);
  325. if (rc || retlen != SERCOMM_MAGIC_LEN)
  326. continue;
  327. if (memcmp(buf, SERCOMM_MAGIC_PFX, SERCOMM_MAGIC_PFX_LEN))
  328. continue;
  329. rc = char_to_num(buf[SERCOMM_MAGIC_PFX_LEN + 0]) * 100;
  330. rc += char_to_num(buf[SERCOMM_MAGIC_PFX_LEN + 1]) * 10;
  331. rc += char_to_num(buf[SERCOMM_MAGIC_PFX_LEN + 2]) * 1;
  332. return rc;
  333. }
  334. return -ENOENT;
  335. }
  336. static int mtdsplit_parse_ser_wfi(struct mtd_info *master,
  337. const struct mtd_partition **pparts,
  338. struct mtd_part_parser_data *data)
  339. {
  340. struct mtd_partition *parts;
  341. struct mtd_info *mtd_bf1, *mtd_bf2;
  342. loff_t img1_off = 0;
  343. loff_t img2_off = master->size / 2;
  344. loff_t img1_size = (img2_off - img1_off);
  345. loff_t img2_size = (master->size - img2_off);
  346. loff_t active_off, inactive_off;
  347. loff_t active_size, inactive_size;
  348. const char *inactive_name;
  349. uint8_t *buf;
  350. int bf1, bf2;
  351. int ret;
  352. mtd_bf1 = get_mtd_device_nm("bootflag1");
  353. if (IS_ERR(mtd_bf1))
  354. return -ENOENT;
  355. mtd_bf2 = get_mtd_device_nm("bootflag2");
  356. if (IS_ERR(mtd_bf2))
  357. return -ENOENT;
  358. buf = kzalloc(master->erasesize, GFP_KERNEL);
  359. if (!buf)
  360. return -ENOMEM;
  361. bf1 = sercomm_bootflag_value(mtd_bf1, buf);
  362. if (bf1 >= 0)
  363. printk("sercomm: bootflag1=%d\n", bf1);
  364. bf2 = sercomm_bootflag_value(mtd_bf2, buf);
  365. if (bf2 >= 0)
  366. printk("sercomm: bootflag2=%d\n", bf2);
  367. if (bf1 == bf2 && bf2 >= 0) {
  368. struct erase_info bf_erase;
  369. bf2 = -ENOENT;
  370. bf_erase.addr = 0;
  371. bf_erase.len = mtd_bf2->size;
  372. mtd_erase(mtd_bf2, &bf_erase);
  373. }
  374. if (bf1 >= bf2) {
  375. active_off = img1_off;
  376. active_size = img1_size;
  377. inactive_off = img2_off;
  378. inactive_size = img2_size;
  379. inactive_name = PART_IMAGE_2;
  380. } else {
  381. active_off = img2_off;
  382. active_size = img2_size;
  383. inactive_off = img1_off;
  384. inactive_size = img1_size;
  385. inactive_name = PART_IMAGE_1;
  386. }
  387. ret = parse_bcm_wfi(master, pparts, buf, active_off, active_size, false);
  388. kfree(buf);
  389. if (ret > 0) {
  390. parts = kzalloc((ret + 1) * sizeof(*parts), GFP_KERNEL);
  391. if (!parts)
  392. return -ENOMEM;
  393. memcpy(parts, *pparts, ret * sizeof(*parts));
  394. kfree(*pparts);
  395. parts[ret].name = inactive_name;
  396. parts[ret].offset = inactive_off;
  397. parts[ret].size = inactive_size;
  398. ret++;
  399. *pparts = parts;
  400. } else {
  401. parts = kzalloc(BCM_WFI_SPLIT_PARTS * sizeof(*parts), GFP_KERNEL);
  402. parts[0].name = PART_IMAGE_1;
  403. parts[0].offset = img1_off;
  404. parts[0].size = img1_size;
  405. parts[1].name = PART_IMAGE_2;
  406. parts[1].offset = img2_off;
  407. parts[1].size = img2_size;
  408. *pparts = parts;
  409. }
  410. return ret;
  411. }
  412. static const struct of_device_id mtdsplit_ser_wfi_of_match[] = {
  413. { .compatible = "sercomm,wfi" },
  414. { },
  415. };
  416. static struct mtd_part_parser mtdsplit_ser_wfi_parser = {
  417. .owner = THIS_MODULE,
  418. .name = "ser-wfi-fw",
  419. .of_match_table = mtdsplit_ser_wfi_of_match,
  420. .parse_fn = mtdsplit_parse_ser_wfi,
  421. .type = MTD_PARSER_TYPE_FIRMWARE,
  422. };
  423. static int __init mtdsplit_bcm_wfi_init(void)
  424. {
  425. register_mtd_parser(&mtdsplit_bcm_wfi_parser);
  426. register_mtd_parser(&mtdsplit_bcm_wfi_split_parser);
  427. register_mtd_parser(&mtdsplit_ser_wfi_parser);
  428. return 0;
  429. }
  430. module_init(mtdsplit_bcm_wfi_init);