2
0

util.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609
  1. /*************************************************************************
  2. *
  3. * Copyright (C) 2018-2023 Ruilin Peng (Nick) <[email protected]>.
  4. *
  5. * smartdns is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * smartdns is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #ifndef _GNU_SOURCE
  19. #define _GNU_SOURCE
  20. #include <stdio.h>
  21. #endif
  22. #include "dns_conf.h"
  23. #include "tlog.h"
  24. #include "util.h"
  25. #include <arpa/inet.h>
  26. #include <ctype.h>
  27. #include <dlfcn.h>
  28. #include <errno.h>
  29. #include <fcntl.h>
  30. #include <inttypes.h>
  31. #include <libgen.h>
  32. #include <linux/capability.h>
  33. #include <linux/limits.h>
  34. #include <linux/netlink.h>
  35. #include <linux/rtnetlink.h>
  36. #include <netinet/tcp.h>
  37. #include <openssl/crypto.h>
  38. #include <openssl/ssl.h>
  39. #include <pthread.h>
  40. #include <signal.h>
  41. #include <stdlib.h>
  42. #include <string.h>
  43. #include <sys/prctl.h>
  44. #include <sys/stat.h>
  45. #include <sys/statvfs.h>
  46. #include <sys/time.h>
  47. #include <sys/types.h>
  48. #include <time.h>
  49. #include <unistd.h>
  50. #include <unwind.h>
  51. #define TMP_BUFF_LEN_32 32
  52. #define NFNL_SUBSYS_IPSET 6
  53. #define IPSET_ATTR_DATA 7
  54. #define IPSET_ATTR_IP 1
  55. #define IPSET_ATTR_IPADDR_IPV4 1
  56. #define IPSET_ATTR_IPADDR_IPV6 2
  57. #define IPSET_ATTR_PROTOCOL 1
  58. #define IPSET_ATTR_SETNAME 2
  59. #define IPSET_ATTR_TIMEOUT 6
  60. #define IPSET_ADD 9
  61. #define IPSET_DEL 10
  62. #define IPSET_MAXNAMELEN 32
  63. #define IPSET_PROTOCOL 6
  64. #define IPV6_ADDR_LEN 16
  65. #define IPV4_ADDR_LEN 4
  66. #ifndef NFNETLINK_V0
  67. #define NFNETLINK_V0 0
  68. #endif
  69. #ifndef NLA_F_NESTED
  70. #define NLA_F_NESTED (1 << 15)
  71. #endif
  72. #ifndef NLA_F_NET_BYTEORDER
  73. #define NLA_F_NET_BYTEORDER (1 << 14)
  74. #endif
  75. #define NETLINK_ALIGN(len) (((len) + 3) & ~(3))
  76. #define BUFF_SZ 1024
  77. #define PACKET_BUF_SIZE 8192
  78. #define PACKET_MAGIC 0X11040918
  79. struct ipset_netlink_attr {
  80. unsigned short len;
  81. unsigned short type;
  82. };
  83. struct ipset_netlink_msg {
  84. unsigned char family;
  85. unsigned char version;
  86. __be16 res_id;
  87. };
  88. static int ipset_fd;
  89. static int pidfile_fd;
  90. unsigned long get_tick_count(void)
  91. {
  92. struct timespec ts;
  93. clock_gettime(CLOCK_MONOTONIC, &ts);
  94. return (ts.tv_sec * 1000 + ts.tv_nsec / 1000000);
  95. }
  96. char *dir_name(char *path)
  97. {
  98. if (strstr(path, "/") == NULL) {
  99. safe_strncpy(path, "./", PATH_MAX);
  100. return path;
  101. }
  102. return dirname(path);
  103. }
  104. char *get_host_by_addr(char *host, int maxsize, struct sockaddr *addr)
  105. {
  106. struct sockaddr_storage *addr_store = (struct sockaddr_storage *)addr;
  107. host[0] = 0;
  108. switch (addr_store->ss_family) {
  109. case AF_INET: {
  110. struct sockaddr_in *addr_in = NULL;
  111. addr_in = (struct sockaddr_in *)addr;
  112. inet_ntop(AF_INET, &addr_in->sin_addr, host, maxsize);
  113. } break;
  114. case AF_INET6: {
  115. struct sockaddr_in6 *addr_in6 = NULL;
  116. addr_in6 = (struct sockaddr_in6 *)addr;
  117. if (IN6_IS_ADDR_V4MAPPED(&addr_in6->sin6_addr)) {
  118. struct sockaddr_in addr_in4;
  119. memset(&addr_in4, 0, sizeof(addr_in4));
  120. memcpy(&addr_in4.sin_addr.s_addr, addr_in6->sin6_addr.s6_addr + 12, sizeof(addr_in4.sin_addr.s_addr));
  121. inet_ntop(AF_INET, &addr_in4.sin_addr, host, maxsize);
  122. } else {
  123. inet_ntop(AF_INET6, &addr_in6->sin6_addr, host, maxsize);
  124. }
  125. } break;
  126. default:
  127. goto errout;
  128. break;
  129. }
  130. return host;
  131. errout:
  132. return NULL;
  133. }
  134. int getaddr_by_host(const char *host, struct sockaddr *addr, socklen_t *addr_len)
  135. {
  136. struct addrinfo hints;
  137. struct addrinfo *result = NULL;
  138. int ret = 0;
  139. memset(&hints, 0, sizeof(hints));
  140. hints.ai_family = AF_UNSPEC;
  141. hints.ai_socktype = SOCK_STREAM;
  142. ret = getaddrinfo(host, "53", &hints, &result);
  143. if (ret != 0) {
  144. goto errout;
  145. }
  146. if (result->ai_addrlen > *addr_len) {
  147. result->ai_addrlen = *addr_len;
  148. }
  149. addr->sa_family = result->ai_family;
  150. memcpy(addr, result->ai_addr, result->ai_addrlen);
  151. *addr_len = result->ai_addrlen;
  152. freeaddrinfo(result);
  153. return 0;
  154. errout:
  155. if (result) {
  156. freeaddrinfo(result);
  157. }
  158. return -1;
  159. }
  160. int getsocket_inet(int fd, struct sockaddr *addr, socklen_t *addr_len)
  161. {
  162. struct sockaddr_storage addr_store;
  163. socklen_t addr_store_len = sizeof(addr_store);
  164. if (getsockname(fd, (struct sockaddr *)&addr_store, &addr_store_len) != 0) {
  165. goto errout;
  166. }
  167. switch (addr_store.ss_family) {
  168. case AF_INET: {
  169. struct sockaddr_in *addr_in = NULL;
  170. addr_in = (struct sockaddr_in *)addr;
  171. addr_in->sin_family = AF_INET;
  172. *addr_len = sizeof(struct sockaddr_in);
  173. memcpy(addr, addr_in, sizeof(struct sockaddr_in));
  174. } break;
  175. case AF_INET6: {
  176. struct sockaddr_in6 *addr_in6 = NULL;
  177. addr_in6 = (struct sockaddr_in6 *)addr;
  178. if (IN6_IS_ADDR_V4MAPPED(&addr_in6->sin6_addr)) {
  179. struct sockaddr_in addr_in4;
  180. memset(&addr_in4, 0, sizeof(addr_in4));
  181. memcpy(&addr_in4.sin_addr.s_addr, addr_in6->sin6_addr.s6_addr + 12, sizeof(addr_in4.sin_addr.s_addr));
  182. addr_in4.sin_family = AF_INET;
  183. addr_in4.sin_port = 0;
  184. *addr_len = sizeof(struct sockaddr_in);
  185. memcpy(addr, &addr_in4, sizeof(struct sockaddr_in));
  186. } else {
  187. addr_in6->sin6_family = AF_INET6;
  188. *addr_len = sizeof(struct sockaddr_in6);
  189. memcpy(addr, addr_in6, sizeof(struct sockaddr_in6));
  190. }
  191. } break;
  192. default:
  193. goto errout;
  194. break;
  195. }
  196. return 0;
  197. errout:
  198. return -1;
  199. }
  200. int fill_sockaddr_by_ip(unsigned char *ip, int ip_len, int port, struct sockaddr *addr, socklen_t *addr_len)
  201. {
  202. if (ip == NULL || addr == NULL || addr_len == NULL) {
  203. return -1;
  204. }
  205. if (ip_len == IPV4_ADDR_LEN) {
  206. struct sockaddr_in *addr_in = NULL;
  207. addr->sa_family = AF_INET;
  208. addr_in = (struct sockaddr_in *)addr;
  209. addr_in->sin_port = htons(port);
  210. addr_in->sin_family = AF_INET;
  211. memcpy(&addr_in->sin_addr.s_addr, ip, ip_len);
  212. *addr_len = 16;
  213. } else if (ip_len == IPV6_ADDR_LEN) {
  214. struct sockaddr_in6 *addr_in6 = NULL;
  215. addr->sa_family = AF_INET6;
  216. addr_in6 = (struct sockaddr_in6 *)addr;
  217. addr_in6->sin6_port = htons(port);
  218. addr_in6->sin6_family = AF_INET6;
  219. memcpy(addr_in6->sin6_addr.s6_addr, ip, ip_len);
  220. *addr_len = 28;
  221. }
  222. return -1;
  223. }
  224. int parse_ip(const char *value, char *ip, int *port)
  225. {
  226. int offset = 0;
  227. char *colon = NULL;
  228. colon = strstr(value, ":");
  229. if (strstr(value, "[")) {
  230. /* ipv6 with port */
  231. char *bracket_end = strstr(value, "]");
  232. if (bracket_end == NULL) {
  233. return -1;
  234. }
  235. offset = bracket_end - value - 1;
  236. memcpy(ip, value + 1, offset);
  237. ip[offset] = 0;
  238. colon = strstr(bracket_end, ":");
  239. if (colon) {
  240. colon++;
  241. }
  242. } else if (colon && strstr(colon + 1, ":")) {
  243. /* ipv6 without port */
  244. strncpy(ip, value, MAX_IP_LEN);
  245. colon = NULL;
  246. } else {
  247. /* ipv4 */
  248. colon = strstr(value, ":");
  249. if (colon == NULL) {
  250. /* without port */
  251. strncpy(ip, value, MAX_IP_LEN);
  252. } else {
  253. /* with port */
  254. offset = colon - value;
  255. colon++;
  256. memcpy(ip, value, offset);
  257. ip[offset] = 0;
  258. }
  259. }
  260. if (colon) {
  261. /* get port num */
  262. *port = atoi(colon);
  263. } else {
  264. *port = PORT_NOT_DEFINED;
  265. }
  266. if (ip[0] == 0) {
  267. return -1;
  268. }
  269. return 0;
  270. }
  271. static int _check_is_ipv4(const char *ip)
  272. {
  273. const char *ptr = ip;
  274. char c = 0;
  275. int dot_num = 0;
  276. int dig_num = 0;
  277. while ((c = *ptr++) != '\0') {
  278. if (c == '.') {
  279. dot_num++;
  280. dig_num = 0;
  281. continue;
  282. }
  283. /* check number count of one field */
  284. if (dig_num >= 4) {
  285. return -1;
  286. }
  287. if (c >= '0' && c <= '9') {
  288. dig_num++;
  289. continue;
  290. }
  291. return -1;
  292. }
  293. /* check field number */
  294. if (dot_num != 3) {
  295. return -1;
  296. }
  297. return 0;
  298. }
  299. static int _check_is_ipv6(const char *ip)
  300. {
  301. const char *ptr = ip;
  302. char c = 0;
  303. int colon_num = 0;
  304. int dig_num = 0;
  305. while ((c = *ptr++) != '\0') {
  306. if (c == '[' || c == ']') {
  307. continue;
  308. }
  309. if (c == ':') {
  310. colon_num++;
  311. dig_num = 0;
  312. continue;
  313. }
  314. /* check number count of one field */
  315. if (dig_num >= 5) {
  316. return -1;
  317. }
  318. dig_num++;
  319. if (c >= '0' && c <= '9') {
  320. continue;
  321. }
  322. if (c >= 'a' && c <= 'f') {
  323. continue;
  324. }
  325. if (c >= 'A' && c <= 'F') {
  326. continue;
  327. }
  328. return -1;
  329. }
  330. /* check field number */
  331. if (colon_num > 7) {
  332. return -1;
  333. }
  334. return 0;
  335. }
  336. int check_is_ipaddr(const char *ip)
  337. {
  338. if (strstr(ip, ".")) {
  339. /* IPV4 */
  340. return _check_is_ipv4(ip);
  341. } else if (strstr(ip, ":")) {
  342. /* IPV6 */
  343. return _check_is_ipv6(ip);
  344. }
  345. return -1;
  346. }
  347. int parse_uri(char *value, char *scheme, char *host, int *port, char *path)
  348. {
  349. return parse_uri_ext(value, scheme, NULL, NULL, host, port, path);
  350. }
  351. void urldecode(char *dst, const char *src)
  352. {
  353. char a, b;
  354. while (*src) {
  355. if ((*src == '%') && ((a = src[1]) && (b = src[2])) && (isxdigit(a) && isxdigit(b))) {
  356. if (a >= 'a') {
  357. a -= 'a' - 'A';
  358. }
  359. if (a >= 'A') {
  360. a -= ('A' - 10);
  361. } else {
  362. a -= '0';
  363. }
  364. if (b >= 'a') {
  365. b -= 'a' - 'A';
  366. }
  367. if (b >= 'A') {
  368. b -= ('A' - 10);
  369. } else {
  370. b -= '0';
  371. }
  372. *dst++ = 16 * a + b;
  373. src += 3;
  374. } else if (*src == '+') {
  375. *dst++ = ' ';
  376. src++;
  377. } else {
  378. *dst++ = *src++;
  379. }
  380. }
  381. *dst++ = '\0';
  382. }
  383. int parse_uri_ext(char *value, char *scheme, char *user, char *password, char *host, int *port, char *path)
  384. {
  385. char *scheme_end = NULL;
  386. int field_len = 0;
  387. char *process_ptr = value;
  388. char user_pass_host_part[PATH_MAX];
  389. char *user_password = NULL;
  390. char *host_part = NULL;
  391. char *host_end = NULL;
  392. scheme_end = strstr(value, "://");
  393. if (scheme_end) {
  394. field_len = scheme_end - value;
  395. if (scheme) {
  396. memcpy(scheme, value, field_len);
  397. scheme[field_len] = 0;
  398. }
  399. process_ptr += field_len + 3;
  400. } else {
  401. if (scheme) {
  402. scheme[0] = '\0';
  403. }
  404. }
  405. host_end = strstr(process_ptr, "/");
  406. if (host_end == NULL) {
  407. host_end = process_ptr + strlen(process_ptr);
  408. };
  409. field_len = host_end - process_ptr;
  410. if (field_len >= (int)sizeof(user_pass_host_part)) {
  411. return -1;
  412. }
  413. memcpy(user_pass_host_part, process_ptr, field_len);
  414. user_pass_host_part[field_len] = 0;
  415. host_part = strstr(user_pass_host_part, "@");
  416. if (host_part != NULL) {
  417. *host_part = '\0';
  418. host_part = host_part + 1;
  419. user_password = user_pass_host_part;
  420. char *sep = strstr(user_password, ":");
  421. if (sep != NULL) {
  422. *sep = '\0';
  423. sep = sep + 1;
  424. if (password) {
  425. urldecode(password, sep);
  426. }
  427. }
  428. if (user) {
  429. urldecode(user, user_password);
  430. }
  431. } else {
  432. host_part = user_pass_host_part;
  433. }
  434. if (host != NULL && parse_ip(host_part, host, port) != 0) {
  435. return -1;
  436. }
  437. process_ptr += field_len;
  438. if (path) {
  439. strcpy(path, process_ptr);
  440. }
  441. return 0;
  442. }
  443. int set_fd_nonblock(int fd, int nonblock)
  444. {
  445. int ret = 0;
  446. int flags = fcntl(fd, F_GETFL);
  447. if (flags == -1) {
  448. return -1;
  449. }
  450. flags = (nonblock) ? (flags | O_NONBLOCK) : (flags & ~O_NONBLOCK);
  451. ret = fcntl(fd, F_SETFL, flags);
  452. if (ret == -1) {
  453. return -1;
  454. }
  455. return 0;
  456. }
  457. char *reverse_string(char *output, const char *input, int len, int to_lower_case)
  458. {
  459. char *begin = output;
  460. if (len <= 0) {
  461. *output = 0;
  462. return output;
  463. }
  464. len--;
  465. while (len >= 0) {
  466. *output = *(input + len);
  467. if (to_lower_case) {
  468. if (*output >= 'A' && *output <= 'Z') {
  469. /* To lower case */
  470. *output = *output + 32;
  471. }
  472. }
  473. output++;
  474. len--;
  475. }
  476. *output = 0;
  477. return begin;
  478. }
  479. char *to_lower_case(char *output, const char *input, int len)
  480. {
  481. char *begin = output;
  482. int i = 0;
  483. if (len <= 0) {
  484. *output = 0;
  485. return output;
  486. }
  487. len--;
  488. while (i < len && *(input + i) != '\0') {
  489. *output = *(input + i);
  490. if (*output >= 'A' && *output <= 'Z') {
  491. /* To lower case */
  492. *output = *output + 32;
  493. }
  494. output++;
  495. i++;
  496. }
  497. *output = 0;
  498. return begin;
  499. }
  500. static inline void _ipset_add_attr(struct nlmsghdr *netlink_head, uint16_t type, size_t len, const void *data)
  501. {
  502. struct ipset_netlink_attr *attr = (void *)netlink_head + NETLINK_ALIGN(netlink_head->nlmsg_len);
  503. uint16_t payload_len = NETLINK_ALIGN(sizeof(struct ipset_netlink_attr)) + len;
  504. attr->type = type;
  505. attr->len = payload_len;
  506. memcpy((void *)attr + NETLINK_ALIGN(sizeof(struct ipset_netlink_attr)), data, len);
  507. netlink_head->nlmsg_len += NETLINK_ALIGN(payload_len);
  508. }
  509. static int _ipset_socket_init(void)
  510. {
  511. if (ipset_fd > 0) {
  512. return 0;
  513. }
  514. ipset_fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_NETFILTER);
  515. if (ipset_fd < 0) {
  516. return -1;
  517. }
  518. return 0;
  519. }
  520. static int _ipset_support_timeout(void)
  521. {
  522. if (dns_conf_ipset_timeout_enable) {
  523. return 0;
  524. }
  525. return -1;
  526. }
  527. static int _ipset_operate(const char *ipset_name, const unsigned char addr[], int addr_len, unsigned long timeout,
  528. int operate)
  529. {
  530. struct nlmsghdr *netlink_head = NULL;
  531. struct ipset_netlink_msg *netlink_msg = NULL;
  532. struct ipset_netlink_attr *nested[3];
  533. char buffer[BUFF_SZ];
  534. uint8_t proto = 0;
  535. ssize_t rc = 0;
  536. int af = 0;
  537. static const struct sockaddr_nl snl = {.nl_family = AF_NETLINK};
  538. uint32_t expire = 0;
  539. if (addr_len != IPV4_ADDR_LEN && addr_len != IPV6_ADDR_LEN) {
  540. errno = EINVAL;
  541. return -1;
  542. }
  543. if (addr_len == IPV4_ADDR_LEN) {
  544. af = AF_INET;
  545. } else if (addr_len == IPV6_ADDR_LEN) {
  546. af = AF_INET6;
  547. } else {
  548. errno = EINVAL;
  549. return -1;
  550. }
  551. if (_ipset_socket_init() != 0) {
  552. return -1;
  553. }
  554. if (strlen(ipset_name) >= IPSET_MAXNAMELEN) {
  555. errno = ENAMETOOLONG;
  556. return -1;
  557. }
  558. memset(buffer, 0, BUFF_SZ);
  559. netlink_head = (struct nlmsghdr *)buffer;
  560. netlink_head->nlmsg_len = NETLINK_ALIGN(sizeof(struct nlmsghdr));
  561. netlink_head->nlmsg_type = operate | (NFNL_SUBSYS_IPSET << 8);
  562. netlink_head->nlmsg_flags = NLM_F_REQUEST | NLM_F_REPLACE;
  563. netlink_msg = (struct ipset_netlink_msg *)(buffer + netlink_head->nlmsg_len);
  564. netlink_head->nlmsg_len += NETLINK_ALIGN(sizeof(struct ipset_netlink_msg));
  565. netlink_msg->family = af;
  566. netlink_msg->version = NFNETLINK_V0;
  567. netlink_msg->res_id = htons(0);
  568. proto = IPSET_PROTOCOL;
  569. _ipset_add_attr(netlink_head, IPSET_ATTR_PROTOCOL, sizeof(proto), &proto);
  570. _ipset_add_attr(netlink_head, IPSET_ATTR_SETNAME, strlen(ipset_name) + 1, ipset_name);
  571. nested[0] = (struct ipset_netlink_attr *)(buffer + NETLINK_ALIGN(netlink_head->nlmsg_len));
  572. netlink_head->nlmsg_len += NETLINK_ALIGN(sizeof(struct ipset_netlink_attr));
  573. nested[0]->type = NLA_F_NESTED | IPSET_ATTR_DATA;
  574. nested[1] = (struct ipset_netlink_attr *)(buffer + NETLINK_ALIGN(netlink_head->nlmsg_len));
  575. netlink_head->nlmsg_len += NETLINK_ALIGN(sizeof(struct ipset_netlink_attr));
  576. nested[1]->type = NLA_F_NESTED | IPSET_ATTR_IP;
  577. _ipset_add_attr(netlink_head,
  578. (af == AF_INET ? IPSET_ATTR_IPADDR_IPV4 : IPSET_ATTR_IPADDR_IPV6) | NLA_F_NET_BYTEORDER, addr_len,
  579. addr);
  580. nested[1]->len = (void *)buffer + NETLINK_ALIGN(netlink_head->nlmsg_len) - (void *)nested[1];
  581. if (timeout > 0 && _ipset_support_timeout() == 0) {
  582. expire = htonl(timeout);
  583. _ipset_add_attr(netlink_head, IPSET_ATTR_TIMEOUT | NLA_F_NET_BYTEORDER, sizeof(expire), &expire);
  584. }
  585. nested[0]->len = (void *)buffer + NETLINK_ALIGN(netlink_head->nlmsg_len) - (void *)nested[0];
  586. for (;;) {
  587. rc = sendto(ipset_fd, buffer, netlink_head->nlmsg_len, 0, (const struct sockaddr *)&snl, sizeof(snl));
  588. if (rc >= 0) {
  589. break;
  590. }
  591. if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINTR) {
  592. struct timespec waiter;
  593. waiter.tv_sec = 0;
  594. waiter.tv_nsec = 10000;
  595. nanosleep(&waiter, NULL);
  596. continue;
  597. }
  598. }
  599. return rc;
  600. }
  601. int ipset_add(const char *ipset_name, const unsigned char addr[], int addr_len, unsigned long timeout)
  602. {
  603. return _ipset_operate(ipset_name, addr, addr_len, timeout, IPSET_ADD);
  604. }
  605. int ipset_del(const char *ipset_name, const unsigned char addr[], int addr_len)
  606. {
  607. return _ipset_operate(ipset_name, addr, addr_len, 0, IPSET_DEL);
  608. }
  609. unsigned char *SSL_SHA256(const unsigned char *d, size_t n, unsigned char *md)
  610. {
  611. static unsigned char m[SHA256_DIGEST_LENGTH];
  612. if (md == NULL) {
  613. md = m;
  614. }
  615. EVP_MD_CTX *ctx = EVP_MD_CTX_create();
  616. if (ctx == NULL) {
  617. return NULL;
  618. }
  619. EVP_MD_CTX_init(ctx);
  620. EVP_DigestInit_ex(ctx, EVP_sha256(), NULL);
  621. EVP_DigestUpdate(ctx, d, n);
  622. EVP_DigestFinal_ex(ctx, m, NULL);
  623. EVP_MD_CTX_destroy(ctx);
  624. return (md);
  625. }
  626. int SSL_base64_decode(const char *in, unsigned char *out)
  627. {
  628. size_t inlen = strlen(in);
  629. int outlen = 0;
  630. if (inlen == 0) {
  631. return 0;
  632. }
  633. outlen = EVP_DecodeBlock(out, (unsigned char *)in, inlen);
  634. if (outlen < 0) {
  635. goto errout;
  636. }
  637. /* Subtract padding bytes from |outlen| */
  638. while (in[--inlen] == '=') {
  639. --outlen;
  640. }
  641. return outlen;
  642. errout:
  643. return -1;
  644. }
  645. int SSL_base64_encode(const void *in, int in_len, char *out)
  646. {
  647. int outlen = 0;
  648. if (in_len == 0) {
  649. return 0;
  650. }
  651. outlen = EVP_EncodeBlock((unsigned char *)out, in, in_len);
  652. if (outlen < 0) {
  653. goto errout;
  654. }
  655. return outlen;
  656. errout:
  657. return -1;
  658. }
  659. int create_pid_file(const char *pid_file)
  660. {
  661. int fd = 0;
  662. int flags = 0;
  663. char buff[TMP_BUFF_LEN_32];
  664. /* create pid file, and lock this file */
  665. fd = open(pid_file, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
  666. if (fd == -1) {
  667. fprintf(stderr, "create pid file failed, %s\n", strerror(errno));
  668. return -1;
  669. }
  670. flags = fcntl(fd, F_GETFD);
  671. if (flags < 0) {
  672. fprintf(stderr, "Could not get flags for PID file %s\n", pid_file);
  673. goto errout;
  674. }
  675. flags |= FD_CLOEXEC;
  676. if (fcntl(fd, F_SETFD, flags) == -1) {
  677. fprintf(stderr, "Could not set flags for PID file %s\n", pid_file);
  678. goto errout;
  679. }
  680. if (lockf(fd, F_TLOCK, 0) < 0) {
  681. fprintf(stderr, "Server is already running.\n");
  682. goto errout;
  683. }
  684. snprintf(buff, TMP_BUFF_LEN_32, "%d\n", getpid());
  685. if (write(fd, buff, strnlen(buff, TMP_BUFF_LEN_32)) < 0) {
  686. fprintf(stderr, "write pid to file failed, %s.\n", strerror(errno));
  687. goto errout;
  688. }
  689. if (pidfile_fd > 0) {
  690. close(pidfile_fd);
  691. }
  692. pidfile_fd = fd;
  693. return 0;
  694. errout:
  695. if (fd > 0) {
  696. close(fd);
  697. }
  698. return -1;
  699. }
  700. #if OPENSSL_API_COMPAT < 0x10100000
  701. #define THREAD_STACK_SIZE (16 * 1024)
  702. static pthread_mutex_t *lock_cs;
  703. static long *lock_count;
  704. static __attribute__((unused)) void _pthreads_locking_callback(int mode, int type, const char *file, int line)
  705. {
  706. if (mode & CRYPTO_LOCK) {
  707. pthread_mutex_lock(&(lock_cs[type]));
  708. lock_count[type]++;
  709. } else {
  710. pthread_mutex_unlock(&(lock_cs[type]));
  711. }
  712. }
  713. static __attribute__((unused)) unsigned long _pthreads_thread_id(void)
  714. {
  715. unsigned long ret = 0;
  716. ret = (unsigned long)pthread_self();
  717. return (ret);
  718. }
  719. void SSL_CRYPTO_thread_setup(void)
  720. {
  721. int i = 0;
  722. lock_cs = OPENSSL_malloc(CRYPTO_num_locks() * sizeof(pthread_mutex_t));
  723. lock_count = OPENSSL_malloc(CRYPTO_num_locks() * sizeof(long));
  724. if (!lock_cs || !lock_count) {
  725. /* Nothing we can do about this...void function! */
  726. if (lock_cs) {
  727. OPENSSL_free(lock_cs);
  728. }
  729. if (lock_count) {
  730. OPENSSL_free(lock_count);
  731. }
  732. return;
  733. }
  734. for (i = 0; i < CRYPTO_num_locks(); i++) {
  735. lock_count[i] = 0;
  736. pthread_mutex_init(&(lock_cs[i]), NULL);
  737. }
  738. #if OPENSSL_API_COMPAT < 0x10000000
  739. CRYPTO_set_id_callback(_pthreads_thread_id);
  740. #else
  741. CRYPTO_THREADID_set_callback(_pthreads_thread_id);
  742. #endif
  743. CRYPTO_set_locking_callback(_pthreads_locking_callback);
  744. }
  745. void SSL_CRYPTO_thread_cleanup(void)
  746. {
  747. int i = 0;
  748. CRYPTO_set_locking_callback(NULL);
  749. for (i = 0; i < CRYPTO_num_locks(); i++) {
  750. pthread_mutex_destroy(&(lock_cs[i]));
  751. }
  752. OPENSSL_free(lock_cs);
  753. OPENSSL_free(lock_count);
  754. }
  755. #endif
  756. #define SERVER_NAME_LEN 256
  757. #define TLS_HEADER_LEN 5
  758. #define TLS_HANDSHAKE_CONTENT_TYPE 0x16
  759. #define TLS_HANDSHAKE_TYPE_CLIENT_HELLO 0x01
  760. #ifndef MIN
  761. #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
  762. #endif
  763. static int parse_extensions(const char *, size_t, char *, const char **);
  764. static int parse_server_name_extension(const char *, size_t, char *, const char **);
  765. /* Parse a TLS packet for the Server Name Indication extension in the client
  766. * hello handshake, returning the first server name found (pointer to static
  767. * array)
  768. *
  769. * Returns:
  770. * >=0 - length of the hostname and updates *hostname
  771. * caller is responsible for freeing *hostname
  772. * -1 - Incomplete request
  773. * -2 - No Host header included in this request
  774. * -3 - Invalid hostname pointer
  775. * -4 - malloc failure
  776. * < -4 - Invalid TLS client hello
  777. */
  778. int parse_tls_header(const char *data, size_t data_len, char *hostname, const char **hostname_ptr)
  779. {
  780. char tls_content_type = 0;
  781. char tls_version_major = 0;
  782. char tls_version_minor = 0;
  783. size_t pos = TLS_HEADER_LEN;
  784. size_t len = 0;
  785. if (hostname == NULL) {
  786. return -3;
  787. }
  788. /* Check that our TCP payload is at least large enough for a TLS header */
  789. if (data_len < TLS_HEADER_LEN) {
  790. return -1;
  791. }
  792. /* SSL 2.0 compatible Client Hello
  793. *
  794. * High bit of first byte (length) and content type is Client Hello
  795. *
  796. * See RFC5246 Appendix E.2
  797. */
  798. if (data[0] & 0x80 && data[2] == 1) {
  799. return -2;
  800. }
  801. tls_content_type = data[0];
  802. if (tls_content_type != TLS_HANDSHAKE_CONTENT_TYPE) {
  803. return -5;
  804. }
  805. tls_version_major = data[1];
  806. tls_version_minor = data[2];
  807. if (tls_version_major < 3) {
  808. return -2;
  809. }
  810. /* TLS record length */
  811. len = ((unsigned char)data[3] << 8) + (unsigned char)data[4] + TLS_HEADER_LEN;
  812. data_len = MIN(data_len, len);
  813. /* Check we received entire TLS record length */
  814. if (data_len < len) {
  815. return -1;
  816. }
  817. /*
  818. * Handshake
  819. */
  820. if (pos + 1 > data_len) {
  821. return -5;
  822. }
  823. if (data[pos] != TLS_HANDSHAKE_TYPE_CLIENT_HELLO) {
  824. return -5;
  825. }
  826. /* Skip past fixed length records:
  827. * 1 Handshake Type
  828. * 3 Length
  829. * 2 Version (again)
  830. * 32 Random
  831. * to Session ID Length
  832. */
  833. pos += 38;
  834. /* Session ID */
  835. if (pos + 1 > data_len) {
  836. return -5;
  837. }
  838. len = (unsigned char)data[pos];
  839. pos += 1 + len;
  840. /* Cipher Suites */
  841. if (pos + 2 > data_len) {
  842. return -5;
  843. }
  844. len = ((unsigned char)data[pos] << 8) + (unsigned char)data[pos + 1];
  845. pos += 2 + len;
  846. /* Compression Methods */
  847. if (pos + 1 > data_len) {
  848. return -5;
  849. }
  850. len = (unsigned char)data[pos];
  851. pos += 1 + len;
  852. if (pos == data_len && tls_version_major == 3 && tls_version_minor == 0) {
  853. return -2;
  854. }
  855. /* Extensions */
  856. if (pos + 2 > data_len) {
  857. return -5;
  858. }
  859. len = ((unsigned char)data[pos] << 8) + (unsigned char)data[pos + 1];
  860. pos += 2;
  861. if (pos + len > data_len) {
  862. return -5;
  863. }
  864. return parse_extensions(data + pos, len, hostname, hostname_ptr);
  865. }
  866. static int parse_extensions(const char *data, size_t data_len, char *hostname, const char **hostname_ptr)
  867. {
  868. size_t pos = 0;
  869. size_t len = 0;
  870. /* Parse each 4 bytes for the extension header */
  871. while (pos + 4 <= data_len) {
  872. /* Extension Length */
  873. len = ((unsigned char)data[pos + 2] << 8) + (unsigned char)data[pos + 3];
  874. /* Check if it's a server name extension */
  875. if (data[pos] == 0x00 && data[pos + 1] == 0x00) {
  876. /* There can be only one extension of each type, so we break
  877. * our state and move p to beginning of the extension here */
  878. if (pos + 4 + len > data_len) {
  879. return -5;
  880. }
  881. return parse_server_name_extension(data + pos + 4, len, hostname, hostname_ptr);
  882. }
  883. pos += 4 + len; /* Advance to the next extension header */
  884. }
  885. /* Check we ended where we expected to */
  886. if (pos != data_len) {
  887. return -5;
  888. }
  889. return -2;
  890. }
  891. static int parse_server_name_extension(const char *data, size_t data_len, char *hostname, const char **hostname_ptr)
  892. {
  893. size_t pos = 2; /* skip server name list length */
  894. size_t len = 0;
  895. while (pos + 3 < data_len) {
  896. len = ((unsigned char)data[pos + 1] << 8) + (unsigned char)data[pos + 2];
  897. if (pos + 3 + len > data_len) {
  898. return -5;
  899. }
  900. switch (data[pos]) { /* name type */
  901. case 0x00: /* host_name */
  902. strncpy(hostname, data + pos + 3, len);
  903. if (hostname_ptr) {
  904. *hostname_ptr = data + pos + 3;
  905. }
  906. hostname[len] = '\0';
  907. return len;
  908. default:
  909. break;
  910. }
  911. pos += 3 + len;
  912. }
  913. /* Check we ended where we expected to */
  914. if (pos != data_len) {
  915. return -5;
  916. }
  917. return -2;
  918. }
  919. void get_compiled_time(struct tm *tm)
  920. {
  921. char s_month[5];
  922. int month = 0;
  923. int day = 0;
  924. int year = 0;
  925. int hour = 0;
  926. int min = 0;
  927. int sec = 0;
  928. static const char *month_names = "JanFebMarAprMayJunJulAugSepOctNovDec";
  929. sscanf(__DATE__, "%4s %d %d", s_month, &day, &year);
  930. month = (strstr(month_names, s_month) - month_names) / 3;
  931. sscanf(__TIME__, "%d:%d:%d", &hour, &min, &sec);
  932. tm->tm_year = year - 1900;
  933. tm->tm_mon = month;
  934. tm->tm_mday = day;
  935. tm->tm_isdst = -1;
  936. tm->tm_hour = hour;
  937. tm->tm_min = min;
  938. tm->tm_sec = sec;
  939. }
  940. int is_numeric(const char *str)
  941. {
  942. while (*str != '\0') {
  943. if (*str < '0' || *str > '9') {
  944. return -1;
  945. }
  946. str++;
  947. }
  948. return 0;
  949. }
  950. int has_network_raw_cap(void)
  951. {
  952. int fd = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP);
  953. if (fd < 0) {
  954. return 0;
  955. }
  956. close(fd);
  957. return 1;
  958. }
  959. int has_unprivileged_ping(void)
  960. {
  961. int fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_ICMP);
  962. if (fd < 0) {
  963. return 0;
  964. }
  965. close(fd);
  966. fd = socket(AF_INET6, SOCK_DGRAM, IPPROTO_ICMPV6);
  967. if (fd < 0) {
  968. return 0;
  969. }
  970. close(fd);
  971. return 1;
  972. }
  973. int set_sock_keepalive(int fd, int keepidle, int keepinterval, int keepcnt)
  974. {
  975. const int yes = 1;
  976. if (setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, &yes, sizeof(yes)) != 0) {
  977. return -1;
  978. }
  979. setsockopt(fd, IPPROTO_TCP, TCP_KEEPIDLE, &keepidle, sizeof(keepidle));
  980. setsockopt(fd, IPPROTO_TCP, TCP_KEEPIDLE, &keepinterval, sizeof(keepinterval));
  981. setsockopt(fd, IPPROTO_TCP, TCP_KEEPIDLE, &keepcnt, sizeof(keepcnt));
  982. return 0;
  983. }
  984. int set_sock_lingertime(int fd, int time)
  985. {
  986. struct linger l;
  987. l.l_onoff = 1;
  988. l.l_linger = 0;
  989. if (setsockopt(fd, SOL_SOCKET, SO_LINGER, (const char *)&l, sizeof(l)) != 0) {
  990. return -1;
  991. }
  992. return 0;
  993. }
  994. uint64_t get_free_space(const char *path)
  995. {
  996. uint64_t size = 0;
  997. struct statvfs buf;
  998. if (statvfs(path, &buf) != 0) {
  999. return 0;
  1000. }
  1001. size = (uint64_t)buf.f_frsize * buf.f_bavail;
  1002. return size;
  1003. }
  1004. struct backtrace_state {
  1005. void **current;
  1006. void **end;
  1007. };
  1008. static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context *context, void *arg)
  1009. {
  1010. struct backtrace_state *state = (struct backtrace_state *)(arg);
  1011. uintptr_t pc = _Unwind_GetIP(context);
  1012. if (pc) {
  1013. if (state->current == state->end) {
  1014. return _URC_END_OF_STACK;
  1015. }
  1016. *state->current++ = (void *)(pc);
  1017. }
  1018. return _URC_NO_REASON;
  1019. }
  1020. void print_stack(void)
  1021. {
  1022. const size_t max_buffer = 30;
  1023. void *buffer[max_buffer];
  1024. int idx = 0;
  1025. struct backtrace_state state = {buffer, buffer + max_buffer};
  1026. _Unwind_Backtrace(unwind_callback, &state);
  1027. int frame_num = state.current - buffer;
  1028. if (frame_num == 0) {
  1029. return;
  1030. }
  1031. tlog(TLOG_FATAL, "Stack:");
  1032. for (idx = 0; idx < frame_num; ++idx) {
  1033. const void *addr = buffer[idx];
  1034. const char *symbol = "";
  1035. Dl_info info;
  1036. memset(&info, 0, sizeof(info));
  1037. if (dladdr(addr, &info) && info.dli_sname) {
  1038. symbol = info.dli_sname;
  1039. }
  1040. void *offset = (void *)((char *)(addr) - (char *)(info.dli_fbase));
  1041. tlog(TLOG_FATAL, "#%.2d: %p %s() from %s+%p", idx + 1, addr, symbol, info.dli_fname, offset);
  1042. }
  1043. }
  1044. void bug_ext(const char *file, int line, const char *func, const char *errfmt, ...)
  1045. {
  1046. va_list ap;
  1047. va_start(ap, errfmt);
  1048. tlog_vext(TLOG_FATAL, file, line, func, NULL, errfmt, ap);
  1049. va_end(ap);
  1050. print_stack();
  1051. /* trigger BUG */
  1052. sleep(1);
  1053. raise(SIGSEGV);
  1054. while (true) {
  1055. sleep(1);
  1056. };
  1057. }
  1058. int write_file(const char *filename, void *data, int data_len)
  1059. {
  1060. int fd = open(filename, O_WRONLY | O_CREAT, 0644);
  1061. if (fd < 0) {
  1062. return -1;
  1063. }
  1064. int len = write(fd, data, data_len);
  1065. if (len < 0) {
  1066. goto errout;
  1067. }
  1068. close(fd);
  1069. return 0;
  1070. errout:
  1071. if (fd > 0) {
  1072. close(fd);
  1073. }
  1074. return -1;
  1075. }
  1076. int dns_packet_save(const char *dir, const char *type, const char *from, const void *packet, int packet_len)
  1077. {
  1078. char *data = NULL;
  1079. int data_len = 0;
  1080. char filename[BUFF_SZ];
  1081. char time_s[BUFF_SZ];
  1082. int ret = -1;
  1083. struct tm *ptm;
  1084. struct tm tm;
  1085. struct timeval tm_val;
  1086. struct stat sb;
  1087. if (stat(dir, &sb) != 0) {
  1088. mkdir(dir, 0750);
  1089. }
  1090. if (gettimeofday(&tm_val, NULL) != 0) {
  1091. return -1;
  1092. }
  1093. ptm = localtime_r(&tm_val.tv_sec, &tm);
  1094. if (ptm == NULL) {
  1095. return -1;
  1096. }
  1097. snprintf(time_s, sizeof(time_s) - 1, "%.4d-%.2d-%.2d %.2d:%.2d:%.2d.%.3d", ptm->tm_year + 1900, ptm->tm_mon + 1,
  1098. ptm->tm_mday, ptm->tm_hour, ptm->tm_min, ptm->tm_sec, (int)(tm_val.tv_usec / 1000));
  1099. snprintf(filename, sizeof(filename) - 1, "%s/%s-%.4d%.2d%.2d-%.2d%.2d%.2d%.1d.packet", dir, type,
  1100. ptm->tm_year + 1900, ptm->tm_mon + 1, ptm->tm_mday, ptm->tm_hour, ptm->tm_min, ptm->tm_sec,
  1101. (int)(tm_val.tv_usec / 100000));
  1102. data = malloc(PACKET_BUF_SIZE);
  1103. if (data == NULL) {
  1104. return -1;
  1105. }
  1106. data_len = snprintf(data, PACKET_BUF_SIZE,
  1107. "type: %s\n"
  1108. "from: %s\n"
  1109. "time: %s\n"
  1110. "packet-len: %d\n",
  1111. type, from, time_s, packet_len);
  1112. if (data_len <= 0 || data_len >= PACKET_BUF_SIZE) {
  1113. goto out;
  1114. }
  1115. data[data_len] = 0;
  1116. data_len++;
  1117. uint32_t magic = htonl(PACKET_MAGIC);
  1118. memcpy(data + data_len, &magic, sizeof(magic));
  1119. data_len += sizeof(magic);
  1120. int len_in_h = htonl(packet_len);
  1121. memcpy(data + data_len, &len_in_h, sizeof(len_in_h));
  1122. data_len += 4;
  1123. memcpy(data + data_len, packet, packet_len);
  1124. data_len += packet_len;
  1125. ret = write_file(filename, data, data_len);
  1126. if (ret != 0) {
  1127. goto out;
  1128. }
  1129. ret = 0;
  1130. out:
  1131. if (data) {
  1132. free(data);
  1133. }
  1134. return ret;
  1135. }
  1136. #ifdef DEBUG
  1137. struct _dns_read_packet_info {
  1138. int data_len;
  1139. int message_len;
  1140. char *message;
  1141. int packet_len;
  1142. uint8_t *packet;
  1143. uint8_t data[0];
  1144. };
  1145. static struct _dns_read_packet_info *_dns_read_packet_file(const char *packet_file)
  1146. {
  1147. struct _dns_read_packet_info *info = NULL;
  1148. int fd = 0;
  1149. int len = 0;
  1150. int message_len = 0;
  1151. uint8_t *ptr = NULL;
  1152. info = malloc(sizeof(struct _dns_read_packet_info) + PACKET_BUF_SIZE);
  1153. fd = open(packet_file, O_RDONLY);
  1154. if (fd < 0) {
  1155. printf("open file %s failed, %s\n", packet_file, strerror(errno));
  1156. goto errout;
  1157. }
  1158. len = read(fd, info->data, PACKET_BUF_SIZE);
  1159. if (len < 0) {
  1160. printf("read file %s failed, %s\n", packet_file, strerror(errno));
  1161. goto errout;
  1162. }
  1163. message_len = strnlen((char *)info->data, PACKET_BUF_SIZE);
  1164. if (message_len >= 512 || message_len >= len) {
  1165. printf("invalid packet file, bad message len\n");
  1166. goto errout;
  1167. }
  1168. info->message_len = message_len;
  1169. info->message = (char *)info->data;
  1170. ptr = info->data + message_len + 1;
  1171. uint32_t magic = 0;
  1172. if (ptr - (uint8_t *)info + sizeof(magic) >= (size_t)len) {
  1173. printf("invalid packet file, magic length is invalid.\n");
  1174. goto errout;
  1175. }
  1176. memcpy(&magic, ptr, sizeof(magic));
  1177. if (magic != htonl(PACKET_MAGIC)) {
  1178. printf("invalid packet file, bad magic\n");
  1179. goto errout;
  1180. }
  1181. ptr += sizeof(magic);
  1182. uint32_t packet_len = 0;
  1183. if (ptr - info->data + sizeof(packet_len) >= (size_t)len) {
  1184. printf("invalid packet file, packet length is invalid.\n");
  1185. goto errout;
  1186. }
  1187. memcpy(&packet_len, ptr, sizeof(packet_len));
  1188. packet_len = ntohl(packet_len);
  1189. ptr += sizeof(packet_len);
  1190. if (packet_len != (size_t)len - (ptr - info->data)) {
  1191. printf("invalid packet file, packet length is invalid\n");
  1192. goto errout;
  1193. }
  1194. info->packet_len = packet_len;
  1195. info->packet = ptr;
  1196. close(fd);
  1197. return info;
  1198. errout:
  1199. if (fd > 0) {
  1200. close(fd);
  1201. }
  1202. if (info) {
  1203. free(info);
  1204. }
  1205. return NULL;
  1206. }
  1207. static int _dns_debug_display(struct dns_packet *packet)
  1208. {
  1209. int i = 0;
  1210. int j = 0;
  1211. int ttl = 0;
  1212. struct dns_rrs *rrs = NULL;
  1213. int rr_count = 0;
  1214. char req_host[MAX_IP_LEN];
  1215. for (j = 1; j < DNS_RRS_END; j++) {
  1216. rrs = dns_get_rrs_start(packet, j, &rr_count);
  1217. printf("section: %d\n", j);
  1218. for (i = 0; i < rr_count && rrs; i++, rrs = dns_get_rrs_next(packet, rrs)) {
  1219. switch (rrs->type) {
  1220. case DNS_T_A: {
  1221. unsigned char addr[4];
  1222. char name[DNS_MAX_CNAME_LEN] = {0};
  1223. /* get A result */
  1224. dns_get_A(rrs, name, DNS_MAX_CNAME_LEN, &ttl, addr);
  1225. req_host[0] = '\0';
  1226. inet_ntop(AF_INET, addr, req_host, sizeof(req_host));
  1227. printf("domain: %s A: %s TTL: %d\n", name, req_host, ttl);
  1228. } break;
  1229. case DNS_T_AAAA: {
  1230. unsigned char addr[16];
  1231. char name[DNS_MAX_CNAME_LEN] = {0};
  1232. dns_get_AAAA(rrs, name, DNS_MAX_CNAME_LEN, &ttl, addr);
  1233. req_host[0] = '\0';
  1234. inet_ntop(AF_INET6, addr, req_host, sizeof(req_host));
  1235. printf("domain: %s AAAA: %s TTL:%d\n", name, req_host, ttl);
  1236. } break;
  1237. case DNS_T_HTTPS: {
  1238. char name[DNS_MAX_CNAME_LEN] = {0};
  1239. char target[DNS_MAX_CNAME_LEN] = {0};
  1240. struct dns_https_param *p = NULL;
  1241. int priority = 0;
  1242. p = dns_get_HTTPS_svcparm_start(rrs, name, DNS_MAX_CNAME_LEN, &ttl, &priority, target,
  1243. DNS_MAX_CNAME_LEN);
  1244. if (p == NULL) {
  1245. printf("get HTTPS svcparm failed\n");
  1246. break;
  1247. }
  1248. printf("domain: %s HTTPS: %s TTL: %d priority: %d\n", name, target, ttl, priority);
  1249. for (; p; p = dns_get_HTTPS_svcparm_next(rrs, p)) {
  1250. switch (p->key) {
  1251. case DNS_HTTPS_T_MANDATORY: {
  1252. printf(" HTTPS: mandatory: %s\n", p->value);
  1253. } break;
  1254. case DNS_HTTPS_T_ALPN: {
  1255. printf(" HTTPS: alpn: %s\n", p->value);
  1256. } break;
  1257. case DNS_HTTPS_T_NO_DEFAULT_ALPN: {
  1258. printf(" HTTPS: no_default_alpn: %s\n", p->value);
  1259. } break;
  1260. case DNS_HTTPS_T_PORT: {
  1261. int port = *(unsigned short *)(p->value);
  1262. printf(" HTTPS: port: %d\n", port);
  1263. } break;
  1264. case DNS_HTTPS_T_IPV4HINT: {
  1265. printf(" HTTPS: ipv4hint: %d\n", p->len / 4);
  1266. for (int k = 0; k < p->len / 4; k++) {
  1267. char ip[16] = {0};
  1268. inet_ntop(AF_INET, p->value + k * 4, ip, sizeof(ip));
  1269. printf(" ipv4: %s\n", ip);
  1270. }
  1271. } break;
  1272. case DNS_HTTPS_T_ECH: {
  1273. printf(" HTTPS: ech: ");
  1274. for (int k = 0; k < p->len; k++) {
  1275. printf("%02x ", p->value[k]);
  1276. }
  1277. printf("\n");
  1278. } break;
  1279. case DNS_HTTPS_T_IPV6HINT: {
  1280. printf(" HTTPS: ipv6hint: %d\n", p->len / 16);
  1281. for (int k = 0; k < p->len / 16; k++) {
  1282. char ip[64] = {0};
  1283. inet_ntop(AF_INET6, p->value + k * 16, ip, sizeof(ip));
  1284. printf(" ipv6: %s\n", ip);
  1285. }
  1286. } break;
  1287. }
  1288. }
  1289. } break;
  1290. case DNS_T_NS: {
  1291. char cname[DNS_MAX_CNAME_LEN];
  1292. char name[DNS_MAX_CNAME_LEN] = {0};
  1293. dns_get_CNAME(rrs, name, DNS_MAX_CNAME_LEN, &ttl, cname, DNS_MAX_CNAME_LEN);
  1294. printf("domain: %s TTL: %d NS: %s\n", name, ttl, cname);
  1295. } break;
  1296. case DNS_T_CNAME: {
  1297. char cname[DNS_MAX_CNAME_LEN];
  1298. char name[DNS_MAX_CNAME_LEN] = {0};
  1299. if (dns_conf_force_no_cname) {
  1300. continue;
  1301. }
  1302. dns_get_CNAME(rrs, name, DNS_MAX_CNAME_LEN, &ttl, cname, DNS_MAX_CNAME_LEN);
  1303. printf("domain: %s TTL: %d CNAME: %s\n", name, ttl, cname);
  1304. } break;
  1305. case DNS_T_SOA: {
  1306. char name[DNS_MAX_CNAME_LEN] = {0};
  1307. struct dns_soa soa;
  1308. dns_get_SOA(rrs, name, 128, &ttl, &soa);
  1309. printf("domain: %s SOA: mname: %s, rname: %s, serial: %d, refresh: %d, retry: %d, expire: "
  1310. "%d, minimum: %d",
  1311. name, soa.mname, soa.rname, soa.serial, soa.refresh, soa.retry, soa.expire, soa.minimum);
  1312. } break;
  1313. default:
  1314. break;
  1315. }
  1316. }
  1317. printf("\n");
  1318. }
  1319. return 0;
  1320. }
  1321. int dns_packet_debug(const char *packet_file)
  1322. {
  1323. struct _dns_read_packet_info *info = NULL;
  1324. char buff[DNS_PACKSIZE];
  1325. tlog_set_maxlog_count(0);
  1326. tlog_setlogscreen(1);
  1327. tlog_setlevel(TLOG_DEBUG);
  1328. info = _dns_read_packet_file(packet_file);
  1329. if (info == NULL) {
  1330. goto errout;
  1331. }
  1332. const char *send_env = getenv("SMARTDNS_DEBUG_SEND");
  1333. if (send_env != NULL) {
  1334. char ip[32];
  1335. int port = 53;
  1336. if (parse_ip(send_env, ip, &port) == 0) {
  1337. int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
  1338. if (sockfd > 0) {
  1339. struct sockaddr_in server;
  1340. server.sin_family = AF_INET;
  1341. server.sin_port = htons(port);
  1342. server.sin_addr.s_addr = inet_addr(ip);
  1343. sendto(sockfd, info->packet, info->packet_len, 0, (struct sockaddr *)&server, sizeof(server));
  1344. close(sockfd);
  1345. }
  1346. }
  1347. }
  1348. struct dns_packet *packet = (struct dns_packet *)buff;
  1349. if (dns_decode(packet, DNS_PACKSIZE, info->packet, info->packet_len) != 0) {
  1350. printf("decode failed.\n");
  1351. goto errout;
  1352. }
  1353. _dns_debug_display(packet);
  1354. free(info);
  1355. return 0;
  1356. errout:
  1357. if (info) {
  1358. free(info);
  1359. }
  1360. return -1;
  1361. }
  1362. #endif