| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 | 
							- package router
 
- import (
 
- 	"context"
 
- 	"math"
 
- 	"sort"
 
- 	"time"
 
- 	"github.com/xtls/xray-core/app/observatory"
 
- 	"github.com/xtls/xray-core/common"
 
- 	"github.com/xtls/xray-core/common/dice"
 
- 	"github.com/xtls/xray-core/core"
 
- 	"github.com/xtls/xray-core/features/extension"
 
- )
 
- // LeastLoadStrategy represents a least load balancing strategy
 
- type LeastLoadStrategy struct {
 
- 	settings *StrategyLeastLoadConfig
 
- 	costs    *WeightManager
 
- 	observer extension.Observatory
 
- 	ctx context.Context
 
- }
 
- func (l *LeastLoadStrategy) GetPrincipleTarget(strings []string) []string {
 
- 	var ret []string
 
- 	nodes := l.pickOutbounds(strings)
 
- 	for _, v := range nodes {
 
- 		ret = append(ret, v.Tag)
 
- 	}
 
- 	return ret
 
- }
 
- // NewLeastLoadStrategy creates a new LeastLoadStrategy with settings
 
- func NewLeastLoadStrategy(settings *StrategyLeastLoadConfig) *LeastLoadStrategy {
 
- 	return &LeastLoadStrategy{
 
- 		settings: settings,
 
- 		costs: NewWeightManager(
 
- 			settings.Costs, 1,
 
- 			func(value, cost float64) float64 {
 
- 				return value * math.Pow(cost, 0.5)
 
- 			},
 
- 		),
 
- 	}
 
- }
 
- // node is a minimal copy of HealthCheckResult
 
- // we don't use HealthCheckResult directly because
 
- // it may change by health checker during routing
 
- type node struct {
 
- 	Tag              string
 
- 	CountAll         int
 
- 	CountFail        int
 
- 	RTTAverage       time.Duration
 
- 	RTTDeviation     time.Duration
 
- 	RTTDeviationCost time.Duration
 
- }
 
- func (l *LeastLoadStrategy) InjectContext(ctx context.Context) {
 
- 	l.ctx = ctx
 
- }
 
- func (s *LeastLoadStrategy) PickOutbound(candidates []string) string {
 
- 	selects := s.pickOutbounds(candidates)
 
- 	count := len(selects)
 
- 	if count == 0 {
 
- 		// goes to fallbackTag
 
- 		return ""
 
- 	}
 
- 	return selects[dice.Roll(count)].Tag
 
- }
 
- func (s *LeastLoadStrategy) pickOutbounds(candidates []string) []*node {
 
- 	qualified := s.getNodes(candidates, time.Duration(s.settings.MaxRTT))
 
- 	selects := s.selectLeastLoad(qualified)
 
- 	return selects
 
- }
 
- // selectLeastLoad selects nodes according to Baselines and Expected Count.
 
- //
 
- // The strategy always improves network response speed, not matter which mode below is configured.
 
- // But they can still have different priorities.
 
- //
 
- // 1. Bandwidth priority: no Baseline + Expected Count > 0.: selects `Expected Count` of nodes.
 
- // (one if Expected Count <= 0)
 
- //
 
- // 2. Bandwidth priority advanced: Baselines + Expected Count > 0.
 
- // Select `Expected Count` amount of nodes, and also those near them according to baselines.
 
- // In other words, it selects according to different Baselines, until one of them matches
 
- // the Expected Count, if no Baseline matches, Expected Count applied.
 
- //
 
- // 3. Speed priority: Baselines + `Expected Count <= 0`.
 
- // go through all baselines until find selects, if not, select none. Used in combination
 
- // with 'balancer.fallbackTag', it means: selects qualified nodes or use the fallback.
 
- func (s *LeastLoadStrategy) selectLeastLoad(nodes []*node) []*node {
 
- 	if len(nodes) == 0 {
 
- 		newError("least load: no qualified outbound").AtInfo().WriteToLog()
 
- 		return nil
 
- 	}
 
- 	expected := int(s.settings.Expected)
 
- 	availableCount := len(nodes)
 
- 	if expected > availableCount {
 
- 		return nodes
 
- 	}
 
- 	if expected <= 0 {
 
- 		expected = 1
 
- 	}
 
- 	if len(s.settings.Baselines) == 0 {
 
- 		return nodes[:expected]
 
- 	}
 
- 	count := 0
 
- 	// go through all base line until find expected selects
 
- 	for _, b := range s.settings.Baselines {
 
- 		baseline := time.Duration(b)
 
- 		for i := count; i < availableCount; i++ {
 
- 			if nodes[i].RTTDeviationCost >= baseline {
 
- 				break
 
- 			}
 
- 			count = i + 1
 
- 		}
 
- 		// don't continue if find expected selects
 
- 		if count >= expected {
 
- 			newError("applied baseline: ", baseline).AtDebug().WriteToLog()
 
- 			break
 
- 		}
 
- 	}
 
- 	if s.settings.Expected > 0 && count < expected {
 
- 		count = expected
 
- 	}
 
- 	return nodes[:count]
 
- }
 
- func (s *LeastLoadStrategy) getNodes(candidates []string, maxRTT time.Duration) []*node {
 
- 	if s.observer == nil {
 
- 		common.Must(core.RequireFeatures(s.ctx, func(observatory extension.Observatory) error {
 
- 			s.observer = observatory
 
- 			return nil
 
- 		}))
 
- 	}
 
- 	observeResult, err := s.observer.GetObservation(s.ctx)
 
- 	if err != nil {
 
- 		newError("cannot get observation").Base(err).WriteToLog()
 
- 		return make([]*node, 0)
 
- 	}
 
- 	results := observeResult.(*observatory.ObservationResult)
 
- 	outboundlist := outboundList(candidates)
 
- 	var ret []*node
 
- 	for _, v := range results.Status {
 
- 		if v.Alive && (v.Delay < maxRTT.Milliseconds() || maxRTT == 0) && outboundlist.contains(v.OutboundTag) {
 
- 			record := &node{
 
- 				Tag:              v.OutboundTag,
 
- 				CountAll:         1,
 
- 				CountFail:        1,
 
- 				RTTAverage:       time.Duration(v.Delay) * time.Millisecond,
 
- 				RTTDeviation:     time.Duration(v.Delay) * time.Millisecond,
 
- 				RTTDeviationCost: time.Duration(s.costs.Apply(v.OutboundTag, float64(time.Duration(v.Delay)*time.Millisecond))),
 
- 			}
 
- 			if v.HealthPing != nil {
 
- 				record.RTTAverage = time.Duration(v.HealthPing.Average)
 
- 				record.RTTDeviation = time.Duration(v.HealthPing.Deviation)
 
- 				record.RTTDeviationCost = time.Duration(s.costs.Apply(v.OutboundTag, float64(v.HealthPing.Deviation)))
 
- 				record.CountAll = int(v.HealthPing.All)
 
- 				record.CountFail = int(v.HealthPing.Fail)
 
- 			}
 
- 			ret = append(ret, record)
 
- 		}
 
- 	}
 
- 	leastloadSort(ret)
 
- 	return ret
 
- }
 
- func leastloadSort(nodes []*node) {
 
- 	sort.Slice(nodes, func(i, j int) bool {
 
- 		left := nodes[i]
 
- 		right := nodes[j]
 
- 		if left.RTTDeviationCost != right.RTTDeviationCost {
 
- 			return left.RTTDeviationCost < right.RTTDeviationCost
 
- 		}
 
- 		if left.RTTAverage != right.RTTAverage {
 
- 			return left.RTTAverage < right.RTTAverage
 
- 		}
 
- 		if left.CountFail != right.CountFail {
 
- 			return left.CountFail < right.CountFail
 
- 		}
 
- 		if left.CountAll != right.CountAll {
 
- 			return left.CountAll > right.CountAll
 
- 		}
 
- 		return left.Tag < right.Tag
 
- 	})
 
- }
 
 
  |