浏览代码

add aes128cfb, delete unused files

wangyu- 7 年之前
父节点
当前提交
565034dbae
共有 8 个文件被更改,包括 102 次插入1005 次删除
  1. 35 2
      encrypt.cpp
  2. 1 1
      encrypt.h
  3. 20 0
      lib/aes-common.h
  4. 0 600
      lib/aes.cpp
  5. 0 45
      lib/aes.h
  6. 1 0
      lib/aes_faster_c/aes.h
  7. 45 12
      lib/aes_faster_c/wrapper.cpp
  8. 0 345
      lib/sha1.c

+ 35 - 2
encrypt.cpp

@@ -1,4 +1,4 @@
-#include "lib/aes.h"
+#include "lib/aes-common.h"
 #include "lib/md5.h"
 #include "lib/pbkdf2-sha1.h"
 #include "lib/pbkdf2-sha256.h"
@@ -28,7 +28,7 @@ unsigned char cipher_key_decrypt[cipher_key_len + 100];  //key for aes etc.
 
 unordered_map<int, const char *> auth_mode_tostring = {{auth_none, "none"}, {auth_md5, "md5"}, {auth_crc32, "crc32"},{auth_simple,"simple"},{auth_hmac_sha1,"hmac_sha1"},};
 
-unordered_map<int, const char *> cipher_mode_tostring={{cipher_none,"none"},{cipher_aes128cbc,"aes128cbc"},{cipher_xor,"xor"},};
+unordered_map<int, const char *> cipher_mode_tostring={{cipher_none,"none"},{cipher_aes128cfb,"aes128cfb"},{cipher_aes128cbc,"aes128cbc"},{cipher_xor,"xor"},};
 //TODO aes-gcm
 
 auth_mode_t auth_mode=auth_md5;
@@ -320,6 +320,23 @@ int cipher_aes128cbc_encrypt(const char *data,char *output,int &len,char * key)
 	AES_CBC_encrypt_buffer((unsigned char *)output,(unsigned char *)buf,len,(unsigned char *)key,(unsigned char *)zero_iv);
 	return 0;
 }
+int cipher_aes128cfb_encrypt(const char *data,char *output,int &len,char * key)
+{
+	static int first_time=1;
+	if(aes_key_optimize)
+	{
+		if(first_time==0) key=0;
+		else first_time=0;
+	}
+
+	char buf[buf_len];
+	memcpy(buf,data,len);//TODO inefficient code
+
+	//if(padding(buf,len,16)<0) return -1;
+
+	AES_CFB_encrypt_buffer((unsigned char *)output,(unsigned char *)buf,len,(unsigned char *)key,(unsigned char *)zero_iv);
+	return 0;
+}
 int auth_crc32_verify(const char *data,int &len)
 {
 	if(len<int(sizeof(unsigned int)))
@@ -357,6 +374,20 @@ int cipher_aes128cbc_decrypt(const char *data,char *output,int &len,char * key)
 	if(de_padding(output,len,16)<0) return -1;
 	return 0;
 }
+int cipher_aes128cfb_decrypt(const char *data,char *output,int &len,char * key)
+{
+	static int first_time=1;
+	if(aes_key_optimize)
+	{
+		if(first_time==0) key=0;
+		else first_time=0;
+	}
+	//if(len%16 !=0) {mylog(log_debug,"len%%16!=0\n");return -1;}
+	//if(len<0) {mylog(log_debug,"len <0\n");return -1;}
+	AES_CFB_decrypt_buffer((unsigned char *)output,(unsigned char *)data,len,(unsigned char *)key,(unsigned char *)zero_iv);
+	//if(de_padding(output,len,16)<0) return -1;
+	return 0;
+}
 
 int cipher_none_decrypt(const char *data,char *output,int &len,char * key)
 {
@@ -402,6 +433,7 @@ int cipher_encrypt(const char *data,char *output,int &len,char * key)
 	switch(cipher_mode)
 	{
 	case cipher_aes128cbc:return cipher_aes128cbc_encrypt(data,output,len, key);
+	case cipher_aes128cfb:return cipher_aes128cfb_encrypt(data,output,len, key);
 	case cipher_xor:return cipher_xor_encrypt(data,output,len, key);
 	case cipher_none:return cipher_none_encrypt(data,output,len, key);
 	//default:return cipher_aes128cbc_encrypt(data,output,len, key);
@@ -415,6 +447,7 @@ int cipher_decrypt(const char *data,char *output,int &len,char * key)
 	switch(cipher_mode)
 	{
 		case cipher_aes128cbc:return cipher_aes128cbc_decrypt(data,output,len, key);
+		case cipher_aes128cfb:return cipher_aes128cfb_decrypt(data,output,len, key);
 		case cipher_xor:return cipher_xor_decrypt(data,output,len, key);
 		case cipher_none:return cipher_none_decrypt(data,output,len, key);
 	//	default:	return cipher_aes128cbc_decrypt(data,output,len,key);

+ 1 - 1
encrypt.h

@@ -25,7 +25,7 @@ unsigned short csum(const unsigned short *ptr,int nbytes) ;
 enum auth_mode_t {auth_none=0,auth_md5,auth_crc32,auth_simple,auth_hmac_sha1,auth_end};
 
 
-enum cipher_mode_t {cipher_none=0,cipher_aes128cbc,cipher_xor,cipher_end};
+enum cipher_mode_t {cipher_none=0,cipher_aes128cbc,cipher_xor,cipher_aes128cfb,cipher_end};
 
 
 extern auth_mode_t auth_mode;

+ 20 - 0
lib/aes-common.h

@@ -0,0 +1,20 @@
+/*
+ *  this file comes from https://github.com/kokke/tiny-AES128-C
+ */
+
+#pragma once
+
+#include <stdint.h>
+
+
+
+void AES_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length);
+void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length);
+
+
+void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
+void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
+
+
+void AES_CFB_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
+void AES_CFB_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);

+ 0 - 600
lib/aes.cpp

@@ -1,600 +0,0 @@
-
-/*
- *  this file comes from https://github.com/kokke/tiny-AES128-C
- */
-
-/*
-
-This is an implementation of the AES algorithm, specifically ECB and CBC mode.
-Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
-
-The implementation is verified against the test vectors in:
-  National Institute of Standards and Technology Special Publication 800-38A 2001 ED
-
-ECB-AES128
-----------
-
-  plain-text:
-    6bc1bee22e409f96e93d7e117393172a
-    ae2d8a571e03ac9c9eb76fac45af8e51
-    30c81c46a35ce411e5fbc1191a0a52ef
-    f69f2445df4f9b17ad2b417be66c3710
-
-  key:
-    2b7e151628aed2a6abf7158809cf4f3c
-
-  resulting cipher
-    3ad77bb40d7a3660a89ecaf32466ef97 
-    f5d3d58503b9699de785895a96fdbaaf 
-    43b1cd7f598ece23881b00e3ed030688 
-    7b0c785e27e8ad3f8223207104725dd4 
-
-
-NOTE:   String length must be evenly divisible by 16byte (str_len % 16 == 0)
-        You should pad the end of the string with zeros if this is not the case.
-        For AES192/256 the block size is proportionally larger.
-
-*/
-
-
-/*****************************************************************************/
-/* Includes:                                                                 */
-/*****************************************************************************/
-#include <stdint.h>
-#include <string.h> // CBC mode, for memset
-#include "aes.h"
-
-/*****************************************************************************/
-/* Defines:                                                                  */
-/*****************************************************************************/
-// The number of columns comprising a state in AES. This is a constant in AES. Value=4
-#define Nb 4
-#define BLOCKLEN 16 //Block length in bytes AES is 128b block only
-
-#if defined(AES256) && (AES256 == 1)
-    #define Nk 8
-    #define KEYLEN 32
-    #define Nr 14
-    #define keyExpSize 240
-#elif defined(AES192) && (AES192 == 1)
-    #define Nk 6
-    #define KEYLEN 24
-    #define Nr 12
-    #define keyExpSize 208
-#else
-    #define Nk 4        // The number of 32 bit words in a key.
-    #define KEYLEN 16   // Key length in bytes
-    #define Nr 10       // The number of rounds in AES Cipher.
-    #define keyExpSize 176
-#endif
-
-// jcallan@github points out that declaring Multiply as a function 
-// reduces code size considerably with the Keil ARM compiler.
-// See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3
-#ifndef MULTIPLY_AS_A_FUNCTION
-  #define MULTIPLY_AS_A_FUNCTION 0
-#endif
-
-
-/*****************************************************************************/
-/* Private variables:                                                        */
-/*****************************************************************************/
-// state - array holding the intermediate results during decryption.
-typedef uint8_t state_t[4][4];
-static state_t* state;
-
-// The array that stores the round keys.
-static uint8_t RoundKey[keyExpSize];
-
-// The Key input to the AES Program
-static const uint8_t* Key;
-
-#if defined(CBC) && CBC
-  // Initial Vector used only for CBC mode
-  static uint8_t* Iv;
-#endif
-
-// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
-// The numbers below can be computed dynamically trading ROM for RAM - 
-// This can be useful in (embedded) bootloader applications, where ROM is often limited.
-static const uint8_t sbox[256] = {
-  //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F
-  0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
-  0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
-  0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
-  0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
-  0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
-  0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
-  0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
-  0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
-  0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
-  0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
-  0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
-  0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
-  0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
-  0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
-  0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
-  0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
-
-static const uint8_t rsbox[256] = {
-  0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
-  0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
-  0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
-  0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
-  0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
-  0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
-  0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
-  0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
-  0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
-  0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
-  0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
-  0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
-  0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
-  0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
-  0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
-  0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
-
-// The round constant word array, Rcon[i], contains the values given by 
-// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
-static const uint8_t Rcon[11] = {
-  0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
-
-/*
- * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES128-C/pull/12),
- * that you can remove most of the elements in the Rcon array, because they are unused.
- *
- * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
- * 
- * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed), 
- *  up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
- *
- * ... which is why the full array below has been 'disabled' below.
- */
-#if 0
-static const uint8_t Rcon[256] = {
-  0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
-  0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
-  0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
-  0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
-  0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
-  0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
-  0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
-  0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
-  0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
-  0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
-  0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
-  0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
-  0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
-  0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
-  0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
-  0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d };
-#endif
-
-/*****************************************************************************/
-/* Private functions:                                                        */
-/*****************************************************************************/
-static uint8_t getSBoxValue(uint8_t num)
-{
-  return sbox[num];
-}
-
-static uint8_t getSBoxInvert(uint8_t num)
-{
-  return rsbox[num];
-}
-
-// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. 
-static void KeyExpansion(void)
-{
-  uint32_t i, k;
-  uint8_t tempa[4]; // Used for the column/row operations
-  
-  // The first round key is the key itself.
-  for (i = 0; i < Nk; ++i)
-  {
-    RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
-    RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
-    RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
-    RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
-  }
-
-  // All other round keys are found from the previous round keys.
-  //i == Nk
-  for (; i < Nb * (Nr + 1); ++i)
-  {
-    {
-      tempa[0]=RoundKey[(i-1) * 4 + 0];
-      tempa[1]=RoundKey[(i-1) * 4 + 1];
-      tempa[2]=RoundKey[(i-1) * 4 + 2];
-      tempa[3]=RoundKey[(i-1) * 4 + 3];
-    }
-
-    if (i % Nk == 0)
-    {
-      // This function shifts the 4 bytes in a word to the left once.
-      // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
-
-      // Function RotWord()
-      {
-        k = tempa[0];
-        tempa[0] = tempa[1];
-        tempa[1] = tempa[2];
-        tempa[2] = tempa[3];
-        tempa[3] = k;
-      }
-
-      // SubWord() is a function that takes a four-byte input word and 
-      // applies the S-box to each of the four bytes to produce an output word.
-
-      // Function Subword()
-      {
-        tempa[0] = getSBoxValue(tempa[0]);
-        tempa[1] = getSBoxValue(tempa[1]);
-        tempa[2] = getSBoxValue(tempa[2]);
-        tempa[3] = getSBoxValue(tempa[3]);
-      }
-
-      tempa[0] =  tempa[0] ^ Rcon[i/Nk];
-    }
-#if defined(AES256) && (AES256 == 1)
-    if (i % Nk == 4)
-    {
-      // Function Subword()
-      {
-        tempa[0] = getSBoxValue(tempa[0]);
-        tempa[1] = getSBoxValue(tempa[1]);
-        tempa[2] = getSBoxValue(tempa[2]);
-        tempa[3] = getSBoxValue(tempa[3]);
-      }
-    }
-#endif
-    RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
-    RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
-    RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
-    RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
-  }
-}
-
-// This function adds the round key to state.
-// The round key is added to the state by an XOR function.
-static void AddRoundKey(uint8_t round)
-{
-  uint8_t i,j;
-  for (i=0;i<4;++i)
-  {
-    for (j = 0; j < 4; ++j)
-    {
-      (*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j];
-    }
-  }
-}
-
-// The SubBytes Function Substitutes the values in the
-// state matrix with values in an S-box.
-static void SubBytes(void)
-{
-  uint8_t i, j;
-  for (i = 0; i < 4; ++i)
-  {
-    for (j = 0; j < 4; ++j)
-    {
-      (*state)[j][i] = getSBoxValue((*state)[j][i]);
-    }
-  }
-}
-
-// The ShiftRows() function shifts the rows in the state to the left.
-// Each row is shifted with different offset.
-// Offset = Row number. So the first row is not shifted.
-static void ShiftRows(void)
-{
-  uint8_t temp;
-
-  // Rotate first row 1 columns to left  
-  temp           = (*state)[0][1];
-  (*state)[0][1] = (*state)[1][1];
-  (*state)[1][1] = (*state)[2][1];
-  (*state)[2][1] = (*state)[3][1];
-  (*state)[3][1] = temp;
-
-  // Rotate second row 2 columns to left  
-  temp           = (*state)[0][2];
-  (*state)[0][2] = (*state)[2][2];
-  (*state)[2][2] = temp;
-
-  temp           = (*state)[1][2];
-  (*state)[1][2] = (*state)[3][2];
-  (*state)[3][2] = temp;
-
-  // Rotate third row 3 columns to left
-  temp           = (*state)[0][3];
-  (*state)[0][3] = (*state)[3][3];
-  (*state)[3][3] = (*state)[2][3];
-  (*state)[2][3] = (*state)[1][3];
-  (*state)[1][3] = temp;
-}
-
-static uint8_t xtime(uint8_t x)
-{
-  return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
-}
-
-// MixColumns function mixes the columns of the state matrix
-static void MixColumns(void)
-{
-  uint8_t i;
-  uint8_t Tmp,Tm,t;
-  for (i = 0; i < 4; ++i)
-  {  
-    t   = (*state)[i][0];
-    Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
-    Tm  = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm);  (*state)[i][0] ^= Tm ^ Tmp ;
-    Tm  = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm);  (*state)[i][1] ^= Tm ^ Tmp ;
-    Tm  = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm);  (*state)[i][2] ^= Tm ^ Tmp ;
-    Tm  = (*state)[i][3] ^ t ;              Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp ;
-  }
-}
-
-// Multiply is used to multiply numbers in the field GF(2^8)
-#if MULTIPLY_AS_A_FUNCTION
-static uint8_t Multiply(uint8_t x, uint8_t y)
-{
-  return (((y & 1) * x) ^
-       ((y>>1 & 1) * xtime(x)) ^
-       ((y>>2 & 1) * xtime(xtime(x))) ^
-       ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
-       ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
-  }
-#else
-#define Multiply(x, y)                                \
-      (  ((y & 1) * x) ^                              \
-      ((y>>1 & 1) * xtime(x)) ^                       \
-      ((y>>2 & 1) * xtime(xtime(x))) ^                \
-      ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^         \
-      ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))   \
-
-#endif
-
-// MixColumns function mixes the columns of the state matrix.
-// The method used to multiply may be difficult to understand for the inexperienced.
-// Please use the references to gain more information.
-static void InvMixColumns(void)
-{
-  int i;
-  uint8_t a, b, c, d;
-  for (i = 0; i < 4; ++i)
-  { 
-    a = (*state)[i][0];
-    b = (*state)[i][1];
-    c = (*state)[i][2];
-    d = (*state)[i][3];
-
-    (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
-    (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
-    (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
-    (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
-  }
-}
-
-
-// The SubBytes Function Substitutes the values in the
-// state matrix with values in an S-box.
-static void InvSubBytes(void)
-{
-  uint8_t i,j;
-  for (i = 0; i < 4; ++i)
-  {
-    for (j = 0; j < 4; ++j)
-    {
-      (*state)[j][i] = getSBoxInvert((*state)[j][i]);
-    }
-  }
-}
-
-static void InvShiftRows(void)
-{
-  uint8_t temp;
-
-  // Rotate first row 1 columns to right  
-  temp = (*state)[3][1];
-  (*state)[3][1] = (*state)[2][1];
-  (*state)[2][1] = (*state)[1][1];
-  (*state)[1][1] = (*state)[0][1];
-  (*state)[0][1] = temp;
-
-  // Rotate second row 2 columns to right 
-  temp = (*state)[0][2];
-  (*state)[0][2] = (*state)[2][2];
-  (*state)[2][2] = temp;
-
-  temp = (*state)[1][2];
-  (*state)[1][2] = (*state)[3][2];
-  (*state)[3][2] = temp;
-
-  // Rotate third row 3 columns to right
-  temp = (*state)[0][3];
-  (*state)[0][3] = (*state)[1][3];
-  (*state)[1][3] = (*state)[2][3];
-  (*state)[2][3] = (*state)[3][3];
-  (*state)[3][3] = temp;
-}
-
-
-// Cipher is the main function that encrypts the PlainText.
-static void Cipher(void)
-{
-  uint8_t round = 0;
-
-  // Add the First round key to the state before starting the rounds.
-  AddRoundKey(0); 
-  
-  // There will be Nr rounds.
-  // The first Nr-1 rounds are identical.
-  // These Nr-1 rounds are executed in the loop below.
-  for (round = 1; round < Nr; ++round)
-  {
-    SubBytes();
-    ShiftRows();
-    MixColumns();
-    AddRoundKey(round);
-  }
-  
-  // The last round is given below.
-  // The MixColumns function is not here in the last round.
-  SubBytes();
-  ShiftRows();
-  AddRoundKey(Nr);
-}
-
-static void InvCipher(void)
-{
-  uint8_t round=0;
-
-  // Add the First round key to the state before starting the rounds.
-  AddRoundKey(Nr); 
-
-  // There will be Nr rounds.
-  // The first Nr-1 rounds are identical.
-  // These Nr-1 rounds are executed in the loop below.
-  for (round = (Nr - 1); round > 0; --round)
-  {
-    InvShiftRows();
-    InvSubBytes();
-    AddRoundKey(round);
-    InvMixColumns();
-  }
-  
-  // The last round is given below.
-  // The MixColumns function is not here in the last round.
-  InvShiftRows();
-  InvSubBytes();
-  AddRoundKey(0);
-}
-
-
-/*****************************************************************************/
-/* Public functions:                                                         */
-/*****************************************************************************/
-#if defined(ECB) && (ECB == 1)
-
-
-void AES_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t* output, const uint32_t length)
-{
-  // Copy input to output, and work in-memory on output
-  memcpy(output, input, length);
-  state = (state_t*)output;
-
-  Key = key;
-  KeyExpansion();
-
-  // The next function call encrypts the PlainText with the Key using AES algorithm.
-  Cipher();
-}
-
-void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length)
-{
-  // Copy input to output, and work in-memory on output
-  memcpy(output, input, length);
-  state = (state_t*)output;
-
-  // The KeyExpansion routine must be called before encryption.
-  Key = key;
-  KeyExpansion();
-
-  InvCipher();
-}
-
-
-#endif // #if defined(ECB) && (ECB == 1)
-
-
-
-
-
-#if defined(CBC) && (CBC == 1)
-
-
-static void XorWithIv(uint8_t* buf)
-{
-  uint8_t i;
-  for (i = 0; i < BLOCKLEN; ++i) //WAS for(i = 0; i < KEYLEN; ++i) but the block in AES is always 128bit so 16 bytes!
-  {
-    buf[i] ^= Iv[i];
-  }
-}
-
-void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
-{
-  uintptr_t i;
-  uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
-
-  // Skip the key expansion if key is passed as 0
-  if (0 != key)
-  {
-    Key = key;
-    KeyExpansion();
-  }
-
-  if (iv != 0)
-  {
-    Iv = (uint8_t*)iv;
-  }
-
-  for (i = 0; i < length; i += BLOCKLEN)
-  {
-    XorWithIv(input);
-    memcpy(output, input, BLOCKLEN);
-    state = (state_t*)output;
-    Cipher();
-    Iv = output;
-    input += BLOCKLEN;
-    output += BLOCKLEN;
-    //printf("Step %d - %d", i/16, i);
-  }
-
-  if (extra)
-  {
-    memcpy(output, input, extra);
-    state = (state_t*)output;
-    Cipher();
-  }
-}
-
-void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
-{
-  uintptr_t i;
-  uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
-
-  // Skip the key expansion if key is passed as 0
-  if (0 != key)
-  {
-    Key = key;
-    KeyExpansion();
-  }
-
-  // If iv is passed as 0, we continue to encrypt without re-setting the Iv
-  if (iv != 0)
-  {
-    Iv = (uint8_t*)iv;
-  }
-
-  for (i = 0; i < length; i += BLOCKLEN)
-  {
-    memcpy(output, input, BLOCKLEN);
-    state = (state_t*)output;
-    InvCipher();
-    XorWithIv(output);
-    Iv = input;
-    input += BLOCKLEN;
-    output += BLOCKLEN;
-  }
-
-  if (extra)
-  {
-    memcpy(output, input, extra);
-    state = (state_t*)output;
-    InvCipher();
-  }
-}
-
-#endif // #if defined(CBC) && (CBC == 1)

+ 0 - 45
lib/aes.h

@@ -1,45 +0,0 @@
-/*
- *  this file comes from https://github.com/kokke/tiny-AES128-C
- */
-
-#ifndef UDP2RAW_AES_H_
-#define UDP2RAW_AES_H_
-
-#include <stdint.h>
-
-
-// #define the macros below to 1/0 to enable/disable the mode of operation.
-//
-// CBC enables AES encryption in CBC-mode of operation.
-// ECB enables the basic ECB 16-byte block algorithm. Both can be enabled simultaneously.
-
-// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
-#ifndef CBC
-  #define CBC 1
-#endif
-
-#ifndef ECB
-  #define ECB 1
-#endif
-
-#define AES128 1
-//#define AES192 1
-//#define AES256 1
-
-#if defined(ECB) && (ECB == 1)
-
-void AES_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length);
-void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length);
-
-#endif // #if defined(ECB) && (ECB == !)
-
-
-#if defined(CBC) && (CBC == 1)
-
-void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
-void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
-
-#endif // #if defined(CBC) && (CBC == 1)
-
-
-#endif //_AES_H_

+ 1 - 0
lib/aes_faster_c/aes.h

@@ -37,6 +37,7 @@
 ////////modification begin
 #define POLARSSL_AES_ROM_TABLES
 #define POLARSSL_CIPHER_MODE_CBC
+#define POLARSSL_CIPHER_MODE_CFB
 //#define POLARSSL_SELF_TEST
 #define polarssl_printf printf
 ///////add end

+ 45 - 12
lib/aes_faster_c/wrapper.cpp

@@ -1,6 +1,7 @@
 #include "aes.h"
 #include <stdio.h>
 #include <stdlib.h>
+#include <assert.h>
 
 #if defined(AES256) && (AES256 == 1)
 #define AES_KEYSIZE 256
@@ -25,32 +26,64 @@ void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output,
 void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
 {
 	static aes_context ctx;
-	static int done=0;
-	if(done==0)
+
+	char tmp_iv[16];
+	if(key!=0)
 	{
 		aes_init( &ctx);
-		done=1;
+		aes_setkey_enc(&ctx,key,AES_KEYSIZE);
 	}
-
-	char tmp_iv[16];
-	if(key!=0) aes_setkey_enc(&ctx,key,AES_KEYSIZE);
 	memcpy(tmp_iv,iv,16);
-	aes_crypt_cbc( &ctx, AES_ENCRYPT, length, (unsigned char* )tmp_iv, (const unsigned char*)input,(unsigned char*) output );
+	int ret=aes_crypt_cbc( &ctx, AES_ENCRYPT, length, (unsigned char* )tmp_iv, (const unsigned char*)input,(unsigned char*) output );
+	assert(ret==0);
 	return ;
 }
 void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
 {
 	static aes_context ctx;
-	static int done=0;
-	if(done==0)
+
+	char tmp_iv[16];
+	if(key!=0)
+	{
+		aes_init( &ctx);
+		aes_setkey_dec(&ctx,key,AES_KEYSIZE);
+	}
+	memcpy(tmp_iv,iv,16);
+	int ret=aes_crypt_cbc( &ctx,AES_DECRYPT, length, (unsigned char*)tmp_iv, (const unsigned char*)input, (unsigned char*) output );
+	assert(ret==0);
+}
+
+void AES_CFB_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
+{
+	static aes_context ctx;
+
+	char tmp_iv[16];
+	if(key!=0)
 	{
 		aes_init( &ctx);
-		done=1;
+		aes_setkey_enc(&ctx,key,AES_KEYSIZE);
 	}
+	memcpy(tmp_iv,iv,16);
+	size_t offset=0;
+	int ret=aes_crypt_cfb128( &ctx, AES_ENCRYPT, length,&offset, (unsigned char* )tmp_iv, (const unsigned char*)input,(unsigned char*) output );
+	assert(ret==0);
+	return ;
+}
+void AES_CFB_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
+{
+	static aes_context ctx;
 
 	char tmp_iv[16];
-	if(key!=0) aes_setkey_dec(&ctx,key,AES_KEYSIZE);
+	if(key!=0)
+	{
+		aes_init( &ctx);
+		aes_setkey_enc(&ctx,key,AES_KEYSIZE);// its aes_setkey_enc again, no typo
+	}
 	memcpy(tmp_iv,iv,16);
-	aes_crypt_cbc( &ctx,AES_DECRYPT, length, (unsigned char*)tmp_iv, (const unsigned char*)input, (unsigned char*) output );
+	size_t offset=0;
+	int ret=aes_crypt_cfb128( &ctx,AES_DECRYPT, length,&offset, (unsigned char*)tmp_iv, (const unsigned char*)input, (unsigned char*) output );
+	assert(ret==0);
 	return;
 }
+
+

+ 0 - 345
lib/sha1.c

@@ -1,345 +0,0 @@
-/*
- * This file is adapted from PolarSSL 1.3.19 (GPL)
- */
-
-/*
- *  FIPS-180-1 compliant SHA-1 implementation
- *
- *  Copyright (C) 2006-2014, ARM Limited, All Rights Reserved
- *
- *  This file is part of mbed TLS (https://tls.mbed.org)
- *
- *  This program is free software; you can redistribute it and/or modify
- *  it under the terms of the GNU General Public License as published by
- *  the Free Software Foundation; either version 2 of the License, or
- *  (at your option) any later version.
- *
- *  This program is distributed in the hope that it will be useful,
- *  but WITHOUT ANY WARRANTY; without even the implied warranty of
- *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- *  GNU General Public License for more details.
- *
- *  You should have received a copy of the GNU General Public License along
- *  with this program; if not, write to the Free Software Foundation, Inc.,
- *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- */
-/*
- *  The SHA-1 standard was published by NIST in 1993.
- *
- *  http://www.itl.nist.gov/fipspubs/fip180-1.htm
- */
-
-#include <string.h>
-#include <stddef.h>
-#include <stdint.h>
-
-typedef struct
-{
-    uint32_t total[2];          /*!< number of bytes processed  */
-    uint32_t state[5];          /*!< intermediate digest state  */
-    unsigned char buffer[64];   /*!< data block being processed */
-}
-sha1_context;
-
-/* Implementation that should never be optimized out by the compiler */
-static void polarssl_zeroize( void *v, size_t n ) {
-    volatile unsigned char *p = (unsigned char *) v; while( n-- ) *p++ = 0;
-}
-
-/*
- * 32-bit integer manipulation macros (big endian)
- */
-#ifndef GET_UINT32_BE
-#define GET_UINT32_BE(n,b,i)                            \
-{                                                       \
-    (n) = ( (uint32_t) (b)[(i)    ] << 24 )             \
-        | ( (uint32_t) (b)[(i) + 1] << 16 )             \
-        | ( (uint32_t) (b)[(i) + 2] <<  8 )             \
-        | ( (uint32_t) (b)[(i) + 3]       );            \
-}
-#endif
-
-#ifndef PUT_UINT32_BE
-#define PUT_UINT32_BE(n,b,i)                            \
-{                                                       \
-    (b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \
-    (b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \
-    (b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \
-    (b)[(i) + 3] = (unsigned char) ( (n)       );       \
-}
-#endif
-
-void sha1_init( sha1_context *ctx )
-{
-    memset( ctx, 0, sizeof( sha1_context ) );
-}
-
-void sha1_free( sha1_context *ctx )
-{
-    if( ctx == NULL )
-        return;
-
-    polarssl_zeroize( ctx, sizeof( sha1_context ) );
-}
-
-/*
- * SHA-1 context setup
- */
-void sha1_starts( sha1_context *ctx )
-{
-    ctx->total[0] = 0;
-    ctx->total[1] = 0;
-
-    ctx->state[0] = 0x67452301;
-    ctx->state[1] = 0xEFCDAB89;
-    ctx->state[2] = 0x98BADCFE;
-    ctx->state[3] = 0x10325476;
-    ctx->state[4] = 0xC3D2E1F0;
-}
-
-void sha1_process( sha1_context *ctx, const unsigned char data[64] )
-{
-    uint32_t temp, W[16], A, B, C, D, E;
-
-    GET_UINT32_BE( W[ 0], data,  0 );
-    GET_UINT32_BE( W[ 1], data,  4 );
-    GET_UINT32_BE( W[ 2], data,  8 );
-    GET_UINT32_BE( W[ 3], data, 12 );
-    GET_UINT32_BE( W[ 4], data, 16 );
-    GET_UINT32_BE( W[ 5], data, 20 );
-    GET_UINT32_BE( W[ 6], data, 24 );
-    GET_UINT32_BE( W[ 7], data, 28 );
-    GET_UINT32_BE( W[ 8], data, 32 );
-    GET_UINT32_BE( W[ 9], data, 36 );
-    GET_UINT32_BE( W[10], data, 40 );
-    GET_UINT32_BE( W[11], data, 44 );
-    GET_UINT32_BE( W[12], data, 48 );
-    GET_UINT32_BE( W[13], data, 52 );
-    GET_UINT32_BE( W[14], data, 56 );
-    GET_UINT32_BE( W[15], data, 60 );
-
-#define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
-
-#define R(t)                                            \
-(                                                       \
-    temp = W[( t -  3 ) & 0x0F] ^ W[( t - 8 ) & 0x0F] ^ \
-           W[( t - 14 ) & 0x0F] ^ W[  t       & 0x0F],  \
-    ( W[t & 0x0F] = S(temp,1) )                         \
-)
-
-#define P(a,b,c,d,e,x)                                  \
-{                                                       \
-    e += S(a,5) + F(b,c,d) + K + x; b = S(b,30);        \
-}
-
-    A = ctx->state[0];
-    B = ctx->state[1];
-    C = ctx->state[2];
-    D = ctx->state[3];
-    E = ctx->state[4];
-
-#define F(x,y,z) (z ^ (x & (y ^ z)))
-#define K 0x5A827999
-
-    P( A, B, C, D, E, W[0]  );
-    P( E, A, B, C, D, W[1]  );
-    P( D, E, A, B, C, W[2]  );
-    P( C, D, E, A, B, W[3]  );
-    P( B, C, D, E, A, W[4]  );
-    P( A, B, C, D, E, W[5]  );
-    P( E, A, B, C, D, W[6]  );
-    P( D, E, A, B, C, W[7]  );
-    P( C, D, E, A, B, W[8]  );
-    P( B, C, D, E, A, W[9]  );
-    P( A, B, C, D, E, W[10] );
-    P( E, A, B, C, D, W[11] );
-    P( D, E, A, B, C, W[12] );
-    P( C, D, E, A, B, W[13] );
-    P( B, C, D, E, A, W[14] );
-    P( A, B, C, D, E, W[15] );
-    P( E, A, B, C, D, R(16) );
-    P( D, E, A, B, C, R(17) );
-    P( C, D, E, A, B, R(18) );
-    P( B, C, D, E, A, R(19) );
-
-#undef K
-#undef F
-
-#define F(x,y,z) (x ^ y ^ z)
-#define K 0x6ED9EBA1
-
-    P( A, B, C, D, E, R(20) );
-    P( E, A, B, C, D, R(21) );
-    P( D, E, A, B, C, R(22) );
-    P( C, D, E, A, B, R(23) );
-    P( B, C, D, E, A, R(24) );
-    P( A, B, C, D, E, R(25) );
-    P( E, A, B, C, D, R(26) );
-    P( D, E, A, B, C, R(27) );
-    P( C, D, E, A, B, R(28) );
-    P( B, C, D, E, A, R(29) );
-    P( A, B, C, D, E, R(30) );
-    P( E, A, B, C, D, R(31) );
-    P( D, E, A, B, C, R(32) );
-    P( C, D, E, A, B, R(33) );
-    P( B, C, D, E, A, R(34) );
-    P( A, B, C, D, E, R(35) );
-    P( E, A, B, C, D, R(36) );
-    P( D, E, A, B, C, R(37) );
-    P( C, D, E, A, B, R(38) );
-    P( B, C, D, E, A, R(39) );
-
-#undef K
-#undef F
-
-#define F(x,y,z) ((x & y) | (z & (x | y)))
-#define K 0x8F1BBCDC
-
-    P( A, B, C, D, E, R(40) );
-    P( E, A, B, C, D, R(41) );
-    P( D, E, A, B, C, R(42) );
-    P( C, D, E, A, B, R(43) );
-    P( B, C, D, E, A, R(44) );
-    P( A, B, C, D, E, R(45) );
-    P( E, A, B, C, D, R(46) );
-    P( D, E, A, B, C, R(47) );
-    P( C, D, E, A, B, R(48) );
-    P( B, C, D, E, A, R(49) );
-    P( A, B, C, D, E, R(50) );
-    P( E, A, B, C, D, R(51) );
-    P( D, E, A, B, C, R(52) );
-    P( C, D, E, A, B, R(53) );
-    P( B, C, D, E, A, R(54) );
-    P( A, B, C, D, E, R(55) );
-    P( E, A, B, C, D, R(56) );
-    P( D, E, A, B, C, R(57) );
-    P( C, D, E, A, B, R(58) );
-    P( B, C, D, E, A, R(59) );
-
-#undef K
-#undef F
-
-#define F(x,y,z) (x ^ y ^ z)
-#define K 0xCA62C1D6
-
-    P( A, B, C, D, E, R(60) );
-    P( E, A, B, C, D, R(61) );
-    P( D, E, A, B, C, R(62) );
-    P( C, D, E, A, B, R(63) );
-    P( B, C, D, E, A, R(64) );
-    P( A, B, C, D, E, R(65) );
-    P( E, A, B, C, D, R(66) );
-    P( D, E, A, B, C, R(67) );
-    P( C, D, E, A, B, R(68) );
-    P( B, C, D, E, A, R(69) );
-    P( A, B, C, D, E, R(70) );
-    P( E, A, B, C, D, R(71) );
-    P( D, E, A, B, C, R(72) );
-    P( C, D, E, A, B, R(73) );
-    P( B, C, D, E, A, R(74) );
-    P( A, B, C, D, E, R(75) );
-    P( E, A, B, C, D, R(76) );
-    P( D, E, A, B, C, R(77) );
-    P( C, D, E, A, B, R(78) );
-    P( B, C, D, E, A, R(79) );
-
-#undef K
-#undef F
-
-    ctx->state[0] += A;
-    ctx->state[1] += B;
-    ctx->state[2] += C;
-    ctx->state[3] += D;
-    ctx->state[4] += E;
-}
-
-/*
- * SHA-1 process buffer
- */
-void sha1_update( sha1_context *ctx, const unsigned char *input, size_t ilen )
-{
-    size_t fill;
-    uint32_t left;
-
-    if( ilen == 0 )
-        return;
-
-    left = ctx->total[0] & 0x3F;
-    fill = 64 - left;
-
-    ctx->total[0] += (uint32_t) ilen;
-    ctx->total[0] &= 0xFFFFFFFF;
-
-    if( ctx->total[0] < (uint32_t) ilen )
-        ctx->total[1]++;
-
-    if( left && ilen >= fill )
-    {
-        memcpy( (void *) (ctx->buffer + left), input, fill );
-        sha1_process( ctx, ctx->buffer );
-        input += fill;
-        ilen  -= fill;
-        left = 0;
-    }
-
-    while( ilen >= 64 )
-    {
-        sha1_process( ctx, input );
-        input += 64;
-        ilen  -= 64;
-    }
-
-    if( ilen > 0 )
-        memcpy( (void *) (ctx->buffer + left), input, ilen );
-}
-
-static const unsigned char sha1_padding[64] =
-{
- 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
-};
-
-/*
- * SHA-1 final digest
- */
-void sha1_finish( sha1_context *ctx, unsigned char output[20] )
-{
-    uint32_t last, padn;
-    uint32_t high, low;
-    unsigned char msglen[8];
-
-    high = ( ctx->total[0] >> 29 )
-         | ( ctx->total[1] <<  3 );
-    low  = ( ctx->total[0] <<  3 );
-
-    PUT_UINT32_BE( high, msglen, 0 );
-    PUT_UINT32_BE( low,  msglen, 4 );
-
-    last = ctx->total[0] & 0x3F;
-    padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
-
-    sha1_update( ctx, sha1_padding, padn );
-    sha1_update( ctx, msglen, 8 );
-
-    PUT_UINT32_BE( ctx->state[0], output,  0 );
-    PUT_UINT32_BE( ctx->state[1], output,  4 );
-    PUT_UINT32_BE( ctx->state[2], output,  8 );
-    PUT_UINT32_BE( ctx->state[3], output, 12 );
-    PUT_UINT32_BE( ctx->state[4], output, 16 );
-}
-
-/*
- * output = SHA-1( input buffer )
- */
-void sha1( const unsigned char *input, size_t ilen, unsigned char output[20] )
-{
-    sha1_context ctx;
-
-    sha1_init( &ctx );
-    sha1_starts( &ctx );
-    sha1_update( &ctx, input, ilen );
-    sha1_finish( &ctx, output );
-    sha1_free( &ctx );
-}