| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 | /* * RmgPath.cpp, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */#include "StdInc.h"#include "RmgPath.h"#include <boost/heap/priority_queue.hpp> //A*VCMI_LIB_NAMESPACE_BEGINusing namespace rmg;const std::function<float(const int3 &, const int3 &)> Path::DEFAULT_MOVEMENT_FUNCTION =[](const int3 & src, const int3 & dst){		return 1.f;};//A* priority queueusing TDistance = std::pair<int3, float>;struct NodeComparer{	bool operator()(const TDistance & lhs, const TDistance & rhs) const	{		return (rhs.second < lhs.second);	}};boost::heap::priority_queue<TDistance, boost::heap::compare<NodeComparer>> createPriorityQueue(){	return boost::heap::priority_queue<TDistance, boost::heap::compare<NodeComparer>>();}Path::Path(const Area & area): dArea(&area){}Path::Path(const Area & area, const int3 & src): dArea(&area){	dPath.add(src);}Path & Path::operator= (const Path & path){	//do not modify area	dPath = path.dPath;	return *this;}bool Path::valid() const{	return !dPath.empty();}Path Path::invalid(){	return Path({});}Path Path::search(const Tileset & dst, bool straight, std::function<float(const int3 &, const int3 &)> moveCostFunction) const{	//A* algorithm taken from Wiki http://en.wikipedia.org/wiki/A*_search_algorithm	if(!dArea)		return Path::invalid();		if(dst.empty()) // Skip construction of same area		return Path(*dArea);	auto resultArea = *dArea + dst;	Path result(resultArea);	int3 src = rmg::Area(dst).nearest(dPath);	result.connect(src);		Tileset closed;    // The set of nodes already evaluated.	auto open = createPriorityQueue(); // The set of tentative nodes to be evaluated, initially containing the start node	std::map<int3, int3> cameFrom;  // The map of navigated nodes.	std::map<int3, float> distances;		cameFrom[src] = int3(-1, -1, -1); //first node points to finish condition	distances[src] = 0;	open.push(std::make_pair(src, 0.f));	// Cost from start along best known path.		while(!open.empty())	{		auto node = open.top();		open.pop();		int3 currentNode = node.first;				closed.insert(currentNode);				if(dPath.contains(currentNode)) //we reached connection, stop		{			// Trace the path using the saved parent information and return path			int3 backTracking = currentNode;			while (cameFrom[backTracking].isValid())			{				result.dPath.add(backTracking);				backTracking = cameFrom[backTracking];			}			return result;		}		else		{			auto computeTileScore = [&open, &closed, &cameFrom, ¤tNode, &distances, &moveCostFunction, &result](const int3& pos) -> void			{				if(closed.count(pos))					return;								if(!result.dArea->contains(pos))					return;								float movementCost = moveCostFunction(currentNode, pos);				float distance = distances[currentNode] + movementCost; //we prefer to use already free paths				int bestDistanceSoFar = std::numeric_limits<int>::max();				auto it = distances.find(pos);				if(it != distances.end())					bestDistanceSoFar = static_cast<int>(it->second);								if(distance < bestDistanceSoFar)				{					cameFrom[pos] = currentNode;					open.push(std::make_pair(pos, distance));					distances[pos] = distance;				}			};						auto dirs = int3::getDirs();			std::vector<int3> neighbors(dirs.begin(), dirs.end());			if(straight)				neighbors.assign(rmg::dirs4.begin(), rmg::dirs4.end());			for(auto & i : neighbors)			{				computeTileScore(currentNode + i);			}		}			}		result.dPath.clear();	return result;}Path Path::search(const int3 & dst, bool straight, std::function<float(const int3 &, const int3 &)> moveCostFunction) const{	return search(Tileset{dst}, straight, std::move(moveCostFunction));}Path Path::search(const Area & dst, bool straight, std::function<float(const int3 &, const int3 &)> moveCostFunction) const{	return search(dst.getTiles(), straight, std::move(moveCostFunction));}Path Path::search(const Path & dst, bool straight, std::function<float(const int3 &, const int3 &)> moveCostFunction) const{	assert(dst.dArea == dArea);	return search(dst.dPath, straight, std::move(moveCostFunction));}void Path::connect(const int3 & path){	dPath.add(path);}void Path::connect(const Tileset & path){	Area a(path);	dPath.unite(a);}void Path::connect(const Area & path){	dPath.unite(path);}void Path::connect(const Path & path){	dPath.unite(path.dPath);}const Area & Path::getPathArea() const{	return dPath;}float Path::nonEuclideanCostFunction(const int3& src, const int3& dst, const int3& center){	float R = 30.0f; // radius of the zone	float W = 10.0f;// width of the transition area	float A = 0.7f; // sine bias	// Euclidean distance:	float d = src.dist2d(dst);	// Distance from dst to the zone center:	float r = dst.dist2d(center);	// Compute normalized offset inside the zone:	// (R - W) is the inner edge, R is the outer edge.	float t = std::clamp((r - (R - W)) / W, 0.0f, 1.0f);	// Use sine bias: lowest cost in the middle (t=0.5), higher near edges.	float bias = 1.0f + A * std::sin(M_PI * t);	return d * bias;}Path::MoveCostFunction Path::createCurvedCostFunction(const Area & border){	// Capture by value to ensure the Area object persists	return [border = border](const int3& src, const int3& dst) -> float	{		float ret = nonEuclideanCostFunction(src, dst, border.getCenterOfMass());		// Route main roads far from border		float dist = border.distanceSqr(dst);		if(dist > 1.0f)		{			ret /= dist;		}		return ret;	};}VCMI_LIB_NAMESPACE_END
 |